Hi All, I fitted several classifiers in a two class problem. I then used the package 'yaImpute' - to apply my predictive models to asciigrids and thereby generate a probability maps. So far I successfully used yaImpute to generate maps for Random Forests, Classification trees, Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). But when I try to use it to two other classifiers - support vector machine (SVM) and linear discriminant analysis (LDA) - I am getting an error message which I am not really sure what it is trying to tell me. Can you please take few minutes of your time to help me understand what these error messages are? I used the following piece of code to apply my models to grids once I fit the model for both LDA and SVM: AsciiGridPredict(lda.fit,xfiles=namelist,outfiles = as.character(outfile)) AsciiGridPredict(svm.fit,xfiles=namelist,outfiles = as.character(outfile)) I am getting the following error message for LDA: Rows per dot: 1 Rows to do: 163 ToDo: ................................................................................................................................................................... Done: . First six lines of predicted data for map row: 2 predict.class predict.posterior.0 predict.posterior.1 predict.LD1 1 <NA> -9999 -9999 -9999 2 <NA> -9999 -9999 -9999 3 <NA> -9999 -9999 -9999 4 <NA> -9999 -9999 -9999 5 <NA> -9999 -9999 -9999 6 <NA> -9999 -9999 -9999 Error in AsciiGridImpute(object, xfiles, outfiles, xtypes = xtypes, lon lon, : predict is not present in the predicted data In addition: Warning message: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, -9999, : invalid factor level, NAs generated I am getting the following error message for SVM: Rows per dot: 1 Rows to do: 163 ToDo: ................................................................................................................................................................... Done: ................................................................................................................................................................... Legend of levels in output grids: predict 1 0 2 1 There were 50 or more warnings (use warnings() to see the first 50)> warnings()Warning messages: 1: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, ... : invalid factor level, NAs generated 2: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, ... : invalid factor level, NAs generated 3: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, ... : invalid factor level, NAs generated 4: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, ... : invalid factor level, NAs generated 5: In `[<-.factor`(`*tmp*`, ri, value = c(-9999, -9999, -9999, ... : invalid factor level, NAs generated I hope my writing is clear and my questions make sense. [[alternative HTML version deleted]]