Dear Prof. Thomas Yee I$B!G(Bm very interested in your R program VGAM. I tried below your data: # Nonparametric proportional odds model data(pneumo)pneumo = transform(pneumo, let=log(exposure.time))vgam(cbind(normal,mild,severe) ~ s(let), cumulative(par=TRUE), pneumo) However, the results by Version of VGAM are different; ----------The result by Version 0.7-7 ----------------------------- Call: vgam(formula = cbind(V1, V2, V3) ~ s(V4), family = cumulative(par = TRUE), data = train) Number of linear predictors: 2 Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2]) Dispersion Parameter for cumulative family: 1 Residual Deviance: 2.9184 on NaN degrees of freedom Log-likelihood: -203.2200 on NaN degrees of freedom Number of Iterations: 6 DF for Terms and Approximate Chi-squares for Nonparametric Effects Df Npar Df Npar Chisq P(Chi) (Intercept):1 1 (Intercept):2 1 s(V4) 1 ----------The result by Version 0.7-3 ----------------------------- Call: vgam(formula = cbind(V1, V2, V3) ~ s(V4), family = cumulative(par = TRUE), data = train) Number of linear predictors: 2 Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2]) Dispersion Parameter for cumulative family: 1 Residual Deviance: 2.37107 on 10.368 degrees of freedom Log-likelihood: -202.9463 on 10.368 degrees of freedom Number of Iterations: 7 DF for Terms and Approximate Chi-squares for Nonparametric Effects Df Npar Df Npar Chisq P(Chi) (Intercept):1 1 (Intercept):2 1 s(V4) 1 2.6 1.95553 0.50986 I think that the result by Version 0.7-3 is right. Please teach me if my result is right. Yours sincerely, Prof. M.Tsujitani Osaka Electro-Communication University [[alternative HTML version deleted]]