Does anyone know the maximum dimension that svm can deal with in R? I am working on support vector regression. My data set is 1721*41030 1721 samples 41030 predictors Some information about my machine: cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 15 model : 4 model name : Intel(R) Xeon(TM) CPU 2.80GHz stepping : 10 cpu MHz : 2793.264 cache size : 2048 KB fpu : yes fpu_exception : yes cpuid level : 3 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm syscall lm pni monitor ds_cpl cid cx16 xtpr ts bogomips : 5537.79 clflush size : 64 cache_alignment : 128 address sizes : 36 bits physical, 48 bits virtual power management: [aiminy at omega ~]$ cat /proc/meminfo MemTotal: 2058192 kB MemFree: 311068 kB Buffers: 924 kB Cached: 15216 kB SwapCached: 176776 kB Active: 1543584 kB Inactive: 153280 kB HighTotal: 0 kB HighFree: 0 kB LowTotal: 2058192 kB LowFree: 311068 kB SwapTotal: 2048184 kB SwapFree: 130480 kB Dirty: 0 kB Writeback: 0 kB Mapped: 1651224 kB Slab: 18476 kB Committed_AS: 3654596 kB PageTables: 14044 kB VmallocTotal: 536870911 kB VmallocUsed: 297744 kB VmallocChunk: 536572807 kB HugePages_Total: 0 HugePages_Free: 0 Hugepagesize: 2048 kB Thanks, AMY