Hi, a while ago I posted a question regarding the use of alternative models, including a quasibinomial mixed-effects model (see Results 1). I rerun the exact same model yesterday using R 2.7.2 and lme4_0.999375-26 (see Results 2) and today using R 2.7.2 and lme4_0.999375-27 (see Results 3). While the coefficient estimates are basically the same in all three regressions, the estimated standard errors and t-values vary dramatically (also the variance of the random effects) despite running the exact same model. Is there any advice which of the models to trust and as to where these differences come from? Thanks, Daniel --------- Results 1 --------- Generalized linear mixed model fit using Laplace Formula: prob.bind ~ capacity * group + (1 | subject) Subset: c(combination == "gnl") Family: quasibinomial(logit link) AIC BIC logLik deviance 11082 11109 -5534 11068 Random effects: Groups Name Variance Std.Dev. subject (Intercept) 42.977 6.5557 Residual 26.845 5.1813 number of obs: 360, groups: subject, 90 Fixed effects: Estimate Std. Error t value (Intercept) -3.8628 1.2701 -3.041 capacity 1.1219 0.1176 9.542 group2 0.9086 1.7905 0.507 group3 2.3700 1.7936 1.321 capacity:group2 -0.1745 0.1610 -1.083 capacity:group3 -0.3807 0.1622 -2.348 Correlation of Fixed Effects: (Intr) capcty group2 group3 cpct:2 capacity -0.322 group2 -0.709 0.228 group3 -0.708 0.228 0.502 capcty:grp2 0.235 -0.730 -0.310 -0.167 capcty:grp3 0.233 -0.725 -0.166 -0.305 0.529 --------- Results 2 --------- Generalized linear mixed model fit by the Laplace approximation Formula: entryprob.bind ~ capacity * factor(group) + (1 | subject) Data: res Subset: c(which(is.na(entryprob) == FALSE) & combination == "gnl") AIC BIC logLik deviance 11084 11115 -5534 11068 Random effects: Groups Name Variance Std.Dev. subject (Intercept) 0.021575 0.14688 Residual 0.013457 0.11601 Number of obs: 360, groups: subject, 90 Fixed effects: Estimate Std. Error t value (Intercept) -3.864981 0.028454 -135.8 capacity 1.121713 0.002632 426.1 factor(group)2 0.909167 0.040113 22.7 factor(group)3 2.372638 0.040184 59.0 capacity:factor(group)2 -0.173956 0.003606 -48.2 capacity:factor(group)3 -0.380799 0.003631 -104.9 Correlation of Fixed Effects: (Intr) capcty fct()2 fct()3 cp:()2 capacity -0.322 factr(grp)2 -0.709 0.228 factr(grp)3 -0.708 0.228 0.502 cpcty:fc()2 0.235 -0.730 -0.309 -0.166 cpcty:fc()3 0.233 -0.725 -0.165 -0.304 0.529 ----------- Results 3 ----------- Generalized linear mixed model fit by the Laplace approximation Formula: entryprob.bind ~ capacity * factor(group) + (1 | subject) Data: res Subset: c(which(is.na(entryprob) == FALSE) & combination == "gnl") AIC BIC logLik deviance 11082 11109 -5534 11068 Random effects: Groups Name Variance Std.Dev. subject (Intercept) 1.6032 1.2662 Number of obs: 360, groups: subject, 90 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.86498 0.24528 -15.76 < 2e-16 *** capacity 1.12171 0.02269 49.43 < 2e-16 *** factor(group)2 0.90917 0.34578 2.63 0.00856 ** factor(group)3 2.37264 0.34639 6.85 7.41e-12 *** capacity:factor(group)2 -0.17396 0.03108 -5.60 2.18e-08 *** capacity:factor(group)3 -0.38080 0.03130 -12.17 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) capcty fct()2 fct()3 cp:()2 capacity -0.322 factr(grp)2 -0.709 0.228 factr(grp)3 -0.708 0.228 0.502 cpcty:fc()2 0.235 -0.730 -0.309 -0.166 cpcty:fc()3 0.233 -0.725 -0.165 -0.304 0.529 ------------------------- cuncta stricte discussurus