Hi, Parameters assessment in R with nls doesn't work, though it works fine with MS Excel with the internal solver :( I use nls in R to determine two parameters (a,b) from experimental data. m V C0 Ce Qe 1 0.0911 0.0021740 3987.581 27.11637 94.51206 2 0.0911 0.0021740 3987.581 27.41915 94.50484 3 0.0911 0.0021740 3987.581 27.89362 94.49352 4 0.0906 0.0021740 5981.370 82.98477 189.37739 5 0.0906 0.0021740 5981.370 84.46435 189.34188 6 0.0906 0.0021740 5981.370 85.33213 189.32106 7 0.0911 0.0021740 7975.161 192.54276 233.30310 8 0.0911 0.0021740 7975.161 196.52891 233.20797 9 0.0911 0.0021740 7975.161 203.07467 233.05176 10 0.0906 0.0021872 9968.951 357.49157 328.29824 11 0.0906 0.0021872 9968.951 368.47609 328.03306 12 0.0906 0.0021872 9968.951 379.18904 327.77444 13 0.0904 0.0021740 13956.532 1382.61955 350.33391 14 0.0904 0.0021740 13956.532 1389.64915 350.16485 15 0.0904 0.0021740 13956.532 1411.87726 349.63030 16 0.0902 0.0021740 15950.322 2592.90486 367.38460 17 0.0902 0.0021740 15950.322 2606.34599 367.06064 18 0.0902 0.0021740 15950.322 2639.54301 366.26053 19 0.0906 0.0021872 17835.817 3894.12224 336.57036 20 0.0906 0.0021872 17835.817 3950.35273 335.21289 21 0.0906 0.0021872 17835.817 3972.29367 334.68320 the model "LgmAltformula" is Qe ~ (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0 * b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a * b + (b * m * a)^2)^(1/2))/(2 * b * m) the command in R is nls(formula=LgmAltFormula,data=bois.DATA,start=list(a=300,b=0.01),trace=TRUE ,control=nls.control(minFactor=0.000000009)) R has difficulties to converge and stops after the maximum of iterations 64650.47 : 2.945876e+02 3.837609e+08 64650.45 : 2.945876e+02 4.022722e+09 64650.45 : 2.945876e+02 1.695669e+09 64650.45 : 2.945876e+02 5.103971e+08 64650.44 : 2.945876e+02 8.497431e+08 64650.41 : 2.945876e+02 1.515243e+09 64650.36 : 2.945877e+02 5.482744e+09 64650.36 : 2.945877e+02 2.152294e+09 64650.36 : 2.945877e+02 7.953167e+08 64650.35 : 2.945877e+02 7.625555e+07 Erreur dans nls(formula = LgmAltFormula, data = bois.DATA, start = list(a 300, : le nombre d'itérations a dépassé le maximum de 50 The parameters "a" and "b" are estimated to be 364 and 0.0126 with Excel with the same data set. I tried with the algorithm="port" with under and upper limits. One of the parameter reaches the limit and the regression stops. How can I succeed with R to make this regression? Regards/Cordialement ------------- Benoit Boulinguiez Ph.D Ecole de Chimie de Rennes (ENSCR) Bureau 1.20 Equipe CIP UMR CNRS 6226 "Sciences Chimiques de Rennes" Campus de Beaulieu, 263 Avenue du Général Leclerc 35700 Rennes, France Tel 33 (0)2 23 23 80 83 Fax 33 (0)2 23 23 81 20 http://www.ensc-rennes.fr/ [[alternative HTML version deleted]]
Try squaring both sides of the formula. On Wed, Sep 3, 2008 at 10:01 AM, Benoit Boulinguiez <benoit.boulinguiez at ensc-rennes.fr> wrote:> Hi, > > Parameters assessment in R with nls doesn't work, though it works fine with > MS Excel with the internal solver :( > > > I use nls in R to determine two parameters (a,b) from experimental data. > > m V C0 Ce Qe > 1 0.0911 0.0021740 3987.581 27.11637 94.51206 > 2 0.0911 0.0021740 3987.581 27.41915 94.50484 > 3 0.0911 0.0021740 3987.581 27.89362 94.49352 > 4 0.0906 0.0021740 5981.370 82.98477 189.37739 > 5 0.0906 0.0021740 5981.370 84.46435 189.34188 > 6 0.0906 0.0021740 5981.370 85.33213 189.32106 > 7 0.0911 0.0021740 7975.161 192.54276 233.30310 > 8 0.0911 0.0021740 7975.161 196.52891 233.20797 > 9 0.0911 0.0021740 7975.161 203.07467 233.05176 > 10 0.0906 0.0021872 9968.951 357.49157 328.29824 > 11 0.0906 0.0021872 9968.951 368.47609 328.03306 > 12 0.0906 0.0021872 9968.951 379.18904 327.77444 > 13 0.0904 0.0021740 13956.532 1382.61955 350.33391 > 14 0.0904 0.0021740 13956.532 1389.64915 350.16485 > 15 0.0904 0.0021740 13956.532 1411.87726 349.63030 > 16 0.0902 0.0021740 15950.322 2592.90486 367.38460 > 17 0.0902 0.0021740 15950.322 2606.34599 367.06064 > 18 0.0902 0.0021740 15950.322 2639.54301 366.26053 > 19 0.0906 0.0021872 17835.817 3894.12224 336.57036 > 20 0.0906 0.0021872 17835.817 3950.35273 335.21289 > 21 0.0906 0.0021872 17835.817 3972.29367 334.68320 > > the model "LgmAltformula" is > > Qe ~ (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0 * > b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a * > b + (b * m * a)^2)^(1/2))/(2 * b * m) > > the command in R is > > > nls(formula=LgmAltFormula,data=bois.DATA,start=list(a=300,b=0.01),trace=TRUE > ,control=nls.control(minFactor=0.000000009)) > > R has difficulties to converge and stops after the maximum of iterations > > 64650.47 : 2.945876e+02 3.837609e+08 > 64650.45 : 2.945876e+02 4.022722e+09 > 64650.45 : 2.945876e+02 1.695669e+09 > 64650.45 : 2.945876e+02 5.103971e+08 > 64650.44 : 2.945876e+02 8.497431e+08 > 64650.41 : 2.945876e+02 1.515243e+09 > 64650.36 : 2.945877e+02 5.482744e+09 > 64650.36 : 2.945877e+02 2.152294e+09 > 64650.36 : 2.945877e+02 7.953167e+08 > 64650.35 : 2.945877e+02 7.625555e+07 > Erreur dans nls(formula = LgmAltFormula, data = bois.DATA, start = list(a > 300, : > le nombre d'it?rations a d?pass? le maximum de 50 > > > The parameters "a" and "b" are estimated to be 364 and 0.0126 with Excel > with the same data set. > I tried with the algorithm="port" with under and upper limits. One of the > parameter reaches the limit and the regression stops. > > How can I succeed with R to make this regression? > > > Regards/Cordialement > > ------------- > Benoit Boulinguiez > Ph.D > Ecole de Chimie de Rennes (ENSCR) Bureau 1.20 > Equipe CIP UMR CNRS 6226 "Sciences Chimiques de Rennes" > Campus de Beaulieu, 263 Avenue du G?n?ral Leclerc > 35700 Rennes, France > Tel 33 (0)2 23 23 80 83 > Fax 33 (0)2 23 23 81 20 > http://www.ensc-rennes.fr/ > > > > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >
Hi Excel fit is not exceptionally good. Try fff<-function(a,b) (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0 * + b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a * + b + (b * m * a)^2)^(1/2))/(2 * b * m) and with attached data frame plot(Qe,fff(364,0.0126)) abline(0,1) you clearly see linear relationship in smaller values but quite chaotic behaviour in bigger ones (or big deviation of experimental points from your model). So it is up to you if you want any fit (like from Excel) or only a good one (like from R). Seems to me that simple linear could be quite a good choice although there is some nelinearity. fit<-lm(Qe~Ce+C0+V+m) summary(fit) Call: lm(formula = Qe ~ Ce + C0 + V + m) Residuals: Min 1Q Median 3Q Max -16.654 -8.653 2.426 9.971 11.912 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -8.148e+02 1.330e+03 -0.613 0.549254 Ce -6.894e-02 4.982e-03 -13.839 6.02e-10 *** C0 3.284e-02 1.676e-03 19.589 4.26e-12 *** V 2.153e+06 4.607e+05 4.674 0.000300 *** m -4.272e+04 1.218e+04 -3.509 0.003167 ** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 10.87 on 15 degrees of freedom Multiple R-squared: 0.9903, Adjusted R-squared: 0.9877 F-statistic: 381.3 on 4 and 15 DF, p-value: 6.91e-15 plot(predict(fit), Qe) abline(0,1) Regards Petr r-help-bounces at r-project.org napsal dne 03.09.2008 16:01:36:> Hi, > > Parameters assessment in R with nls doesn't work, though it works finewith> MS Excel with the internal solver :( > > > I use nls in R to determine two parameters (a,b) from experimental data.> > m V C0 Ce Qe > 1 0.0911 0.0021740 3987.581 27.11637 94.51206 > 2 0.0911 0.0021740 3987.581 27.41915 94.50484 > 3 0.0911 0.0021740 3987.581 27.89362 94.49352 > 4 0.0906 0.0021740 5981.370 82.98477 189.37739 > 5 0.0906 0.0021740 5981.370 84.46435 189.34188 > 6 0.0906 0.0021740 5981.370 85.33213 189.32106 > 7 0.0911 0.0021740 7975.161 192.54276 233.30310 > 8 0.0911 0.0021740 7975.161 196.52891 233.20797 > 9 0.0911 0.0021740 7975.161 203.07467 233.05176 > 10 0.0906 0.0021872 9968.951 357.49157 328.29824 > 11 0.0906 0.0021872 9968.951 368.47609 328.03306 > 12 0.0906 0.0021872 9968.951 379.18904 327.77444 > 13 0.0904 0.0021740 13956.532 1382.61955 350.33391 > 14 0.0904 0.0021740 13956.532 1389.64915 350.16485 > 15 0.0904 0.0021740 13956.532 1411.87726 349.63030 > 16 0.0902 0.0021740 15950.322 2592.90486 367.38460 > 17 0.0902 0.0021740 15950.322 2606.34599 367.06064 > 18 0.0902 0.0021740 15950.322 2639.54301 366.26053 > 19 0.0906 0.0021872 17835.817 3894.12224 336.57036 > 20 0.0906 0.0021872 17835.817 3950.35273 335.21289 > 21 0.0906 0.0021872 17835.817 3972.29367 334.68320 > > the model "LgmAltformula" is > > Qe ~ (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0 * > b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a * > b + (b * m * a)^2)^(1/2))/(2 * b * m) > > the command in R is > > >nls(formula=LgmAltFormula,data=bois.DATA,start=list(a=300,b=0.01),trace=TRUE> ,control=nls.control(minFactor=0.000000009)) > > R has difficulties to converge and stops after the maximum of iterations > > 64650.47 : 2.945876e+02 3.837609e+08 > 64650.45 : 2.945876e+02 4.022722e+09 > 64650.45 : 2.945876e+02 1.695669e+09 > 64650.45 : 2.945876e+02 5.103971e+08 > 64650.44 : 2.945876e+02 8.497431e+08 > 64650.41 : 2.945876e+02 1.515243e+09 > 64650.36 : 2.945877e+02 5.482744e+09 > 64650.36 : 2.945877e+02 2.152294e+09 > 64650.36 : 2.945877e+02 7.953167e+08 > 64650.35 : 2.945877e+02 7.625555e+07 > Erreur dans nls(formula = LgmAltFormula, data = bois.DATA, start =list(a > 300, :> le nombre d'it?rations a d?pass? le maximum de 50 > > > The parameters "a" and "b" are estimated to be 364 and 0.0126 with Excel > with the same data set. > I tried with the algorithm="port" with under and upper limits. One ofthe> parameter reaches the limit and the regression stops. > > How can I succeed with R to make this regression? > > > Regards/Cordialement > > ------------- > Benoit Boulinguiez > Ph.D > Ecole de Chimie de Rennes (ENSCR) Bureau 1.20 > Equipe CIP UMR CNRS 6226 "Sciences Chimiques de Rennes" > Campus de Beaulieu, 263 Avenue du G?n?ral Leclerc > 35700 Rennes, France > Tel 33 (0)2 23 23 80 83 > Fax 33 (0)2 23 23 81 20 > http://www.ensc-rennes.fr/ > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guidehttp://www.R-project.org/posting-guide.html> and provide commented, minimal, self-contained, reproducible code.