Dear R-Users, I wish to simulate a binary outcome data set with predictors (in the example below, age, sex and systolic BP). Is there a way I can set the frequency of the outcome (y) to be say 5% (versus the 0.1% when using the seed below)? # Example R-code based on Frank Harrell's Design help files library(Hmisc) n <- 1000 set.seed(123456) age <- runif(n, 60, 90) sbp <- rnorm(n, 120, 15) sex <- factor(sample(c('female','male'), n,TRUE)) # Specify population model for log odds that CHD = Yes L <- 0.4*(sex == 'male') + 0.045*(age) + 0.05*(sbp) # Simulate binary y to have Prob(y = 1) = 1/[1+exp(-L)] y <- ifelse(runif(n) < plogis(L), 1, 0) table(y) ddist <- datadist(sex,age,sbp) options(datadist = 'ddist') fit <- lrm(y ~ sex + age + sbp) summary(fit) ===============================Steve Frost MPH University of Western Sydney Building 7 Campbelltown Campus Locked Bag 1797 PENRITH SOUTH DC 1797 Phone 61+ 2 4620 3415 Mobile 0407 291088 Fax 61+ 2 4625 4252 ================================