The difference may be due to different handling of missing values.
If you do cor(x,y) "by hand" in excel, you use all available
information
of x and y to calculate sd(x) and sd(y) seperately. But cov(x,y) in
excel will use only complete pairs of (x,y), which is likely not the
same set. So your sd and cov (and mean within cov) will be calculated on
different data. In R, if you use the option use="complete.obs" in cor
all intermediate calculations will be done on the same (complete) set.
If that is the case of your problem you should got an error message if
you tried cor() in R without this option on your dataset. But without an
explanatory example of what you did, this is just guessing.
hth.
Ake Nauta schrieb:> Hello,
>
> I used the function cor to calculate the pearson correlation coefficient
between variables. However, the resulting values do not correspond to the
outcome of my excel-calculations, for which I used the formula
Cor(x,y)=Cov(x,y)/(SD(x)*SD(y))
> So my question is: How does the function "cor" compute the
pearson correlation coefficient?
>
> Thank you in advance,
>
> Ake Nauta
> _________________________________________________________________
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Pflichtangaben gem?? Gesetz ?ber elektronische Handelsregister und
Genossenschaftsregister sowie das Unternehmensregister (EHUG):
Universit?tsklinikum Hamburg-Eppendorf
K?rperschaft des ?ffentlichen Rechts
Gerichtsstand: Hamburg
Vorstandsmitglieder:
Prof. Dr. J?rg F. Debatin (Vorsitzender)
Dr. Alexander Kirstein
Ricarda Klein
Prof. Dr. Dr. Uwe Koch-Gromus