Park, Kyong H Mr ECBC
2008-Mar-14 19:25 UTC
[R] Lme does not work without a random effect (UNCLASSIFIED)
Classification: UNCLASSIFIED
Caveats: NONE
Dear R users,
I'm interested in finding a random effect of the Block in the data shown
below, but 'lme' does not work without the random effect. I'm not
sure how
to group the data without continuous value which is shown in the error
message at the bottom line. If I use 'aov' with Error(Block), is there a
test method comparing between with and without the Block random effect. I'm
using R 2.4.1.
Appreciate your help.
Kyong
LCU ST1 SURF Block
1 6.71 A N 1
2 6.97 A Y 1
3 6.77 B N 1
4 6.90 B Y 1
5 6.63 C N 1
6 6.94 C Y 1
7 6.79 D N 1
8 6.93 D Y 1
9 6.23 A N 2
10 6.83 A Y 2
11 6.61 B N 2
12 6.86 B Y 2
13 6.51 C N 2
14 6.90 C Y 2
15 5.90 D N 2
16 6.97 D Y 2
A result with the random effect:
Anal1<-lme(LCU~ST1*SURF,random=~1|Block,data=data1)> summary(Anal1)
Linear mixed-effects model fit by REML
Data: data1
AIC BIC logLik
25.38958 26.18399 -2.694789
Random effects:
Formula: ~1 | Block
(Intercept) Residual
StdDev: 0.1421141 0.218483
Fixed effects: LCU ~ ST1 * SURF
Value Std.Error DF t-value p-value
(Intercept) 6.470 0.1842977 7 35.10625 0.0000
ST1B 0.220 0.2184830 7 1.00694 0.3475
ST1C 0.100 0.2184830 7 0.45770 0.6610
ST1D -0.125 0.2184830 7 -0.57213 0.5851
SURFY 0.430 0.2184830 7 1.96812 0.0897
ST1B:SURFY -0.240 0.3089816 7 -0.77675 0.4627
ST1C:SURFY -0.080 0.3089816 7 -0.25892 0.8031
ST1D:SURFY 0.175 0.3089816 7 0.56638 0.5888
Without the random effect:
Anal2<-lme(LCU~ST1*SURF,data=data1)
Error in getGroups.data.frame(dataMix, groups) :
Invalid formula for groups
Classification: UNCLASSIFIED
Caveats: NONE
[[alternative HTML version deleted]]
Sundar Dorai-Raj
2008-Mar-14 19:40 UTC
[R] Lme does not work without a random effect (UNCLASSIFIED)
Park, Kyong H Mr ECBC said the following on 3/14/2008 12:25 PM:> Classification: UNCLASSIFIED > Caveats: NONE > > Dear R users, > > I'm interested in finding a random effect of the Block in the data shown > below, but 'lme' does not work without the random effect. I'm not sure how > to group the data without continuous value which is shown in the error > message at the bottom line. If I use 'aov' with Error(Block), is there a > test method comparing between with and without the Block random effect. I'm > using R 2.4.1. > > Appreciate your help. > > Kyong > > LCU ST1 SURF Block > 1 6.71 A N 1 > 2 6.97 A Y 1 > 3 6.77 B N 1 > 4 6.90 B Y 1 > 5 6.63 C N 1 > 6 6.94 C Y 1 > 7 6.79 D N 1 > 8 6.93 D Y 1 > 9 6.23 A N 2 > 10 6.83 A Y 2 > 11 6.61 B N 2 > 12 6.86 B Y 2 > 13 6.51 C N 2 > 14 6.90 C Y 2 > 15 5.90 D N 2 > 16 6.97 D Y 2 > > A result with the random effect: > > Anal1<-lme(LCU~ST1*SURF,random=~1|Block,data=data1) >> summary(Anal1) > Linear mixed-effects model fit by REML > Data: data1 > AIC BIC logLik > 25.38958 26.18399 -2.694789 > > Random effects: > Formula: ~1 | Block > (Intercept) Residual > StdDev: 0.1421141 0.218483 > > Fixed effects: LCU ~ ST1 * SURF > Value Std.Error DF t-value p-value > (Intercept) 6.470 0.1842977 7 35.10625 0.0000 > ST1B 0.220 0.2184830 7 1.00694 0.3475 > ST1C 0.100 0.2184830 7 0.45770 0.6610 > ST1D -0.125 0.2184830 7 -0.57213 0.5851 > SURFY 0.430 0.2184830 7 1.96812 0.0897 > ST1B:SURFY -0.240 0.3089816 7 -0.77675 0.4627 > ST1C:SURFY -0.080 0.3089816 7 -0.25892 0.8031 > ST1D:SURFY 0.175 0.3089816 7 0.56638 0.5888 > > Without the random effect: > > Anal2<-lme(LCU~ST1*SURF,data=data1) > Error in getGroups.data.frame(dataMix, groups) : > Invalid formula for groups > Classification: UNCLASSIFIED > Caveats: NONE > >Use "lm" to fit the model without random effect and use anova to compare: z <- read.table(con <- textConnection(" LCU ST1 SURF Block 1 6.71 A N 1 2 6.97 A Y 1 3 6.77 B N 1 4 6.90 B Y 1 5 6.63 C N 1 6 6.94 C Y 1 7 6.79 D N 1 8 6.93 D Y 1 9 6.23 A N 2 10 6.83 A Y 2 11 6.61 B N 2 12 6.86 B Y 2 13 6.51 C N 2 14 6.90 C Y 2 15 5.90 D N 2 16 6.97 D Y 2"), header = TRUE) close(con) library(nlme) fit <- lme(LCU~ST1*SURF,random=~1|Block,data=z) fit0 <- lm(LCU~ST1*SURF,data=z) anova(fit, fit0) HTH, --sundar
Reasonably Related Threads
- Summary Regard with Lme does not work without a random effect (UN CLASSIFIED)
- removing specified length of text after a period in dataframe of char's
- interpretation of p values for highly correlated logistic analysis
- Fly in the sky and feel the fresh air up
- [Announcement] Version 1.0.17 released