Dear R users, Does anyone know of a way to obtain approximate 95% confidence intervals for predicted values for factor levels of fixed effects from lme? Our goal is to use these intervals to interpret patterns across our predicted values for certain factor levels. Our mixed model has the following form with 7 levels of mtDNA, 2 levels of autosome, 2 levels of brood and 2 levels of block, > lme(fitness ~ mtDNA*autosome + brood, random = ~1 | block) We have used the predict.lme function to obtain predicted values, but are unsure how to obtain appropriate standard errors on these predicted values. Using predict.lme to predict "fitness" across a subset of our factor levels (2 mtDNA, 2 autosome) generates the following output, autosome mtDNA brood block predict.fixed predict.block 1 ore ore A A 0.4977047 0.5016255 2 ore simw501 A A 0.4278287 0.4317495 3 ore ore B A 0.5042857 0.5082065 4 ore simw501 B A 0.4344098 0.4383306 5 ore ore A B 0.4977047 0.4937839 6 ore simw501 A B 0.4278287 0.4239079 7 ore ore B B 0.5042857 0.5003649 8 ore simw501 B B 0.4344098 0.4304890 9 aut ore A A 0.5321071 0.5360279 10 aut simw501 A A 0.4866497 0.4905705 11 aut ore B A 0.5386882 0.5426090 12 aut simw501 B A 0.4932308 0.4971516 13 aut ore A B 0.5321071 0.5281863 14 aut simw501 A B 0.4866497 0.4827289 15 aut ore B B 0.5386882 0.5347674 16 aut simw501 B B 0.4932308 0.4893099 We would like to calculate, for example, the appropriate 95% confidence intervals for the predicted values of autosome=ore + mtDNA=ore, autosome=ore + mtDNA=simw501, etc. Sincerely, Kristi Montooth and Colin Meiklejohn Ecology and Evolutionary Biology Brown University