I am using gls to fit a linear model with spatially-autocorrelated errors. My first step is to fit a simple model, and inspect a semivariogram of residuals. The following example gives this error: Error in FUN(X[[1L]], ...) : unused argument(s) (method = "euclidean") #Example library(nlme) x <- runif(60, 0, 1) # location in x y <- runif(60, 0, 1) # location in y f <- factor(rep(c("A", "B", "C"), each = 20)) # grouping factor pred <- runif(60, 0 , 1) # predictor variable resp <- pred + rnorm(60, 0, 0.5) #response variable dat <- data.frame(x, y, f, pred, resp) #make data frame rm(x,y,f,pred,resp) #remove variables m1 <- gls(resp ~ pred*f, dat) # simple model assuming independent errors Vm1 <- Variogram(m1, form = ~ x + y, metric = "euclidean") # works fine Vgm1 <- Variogram(m1, form = ~ x + y | f, metric = "euclidean") # gives error #End Running the example in ?Variogram.gls gives the same error fm1 <- gls(weight ~ Time * Diet, BodyWeight) Variogram(fm1, form = ~ Time | Rat)[1:10,] Any ideas most appreciated. Dan Bebber Checked by AVG Free Edition. 09:01