I'm having trouble with adapt. I'm trying to use it in a Bayesian setting, to integrate the posterior distribution, and to find posterior means. I tried using the following script, and things went ok: data = rnorm(100,0.2,1.1) data = c(data,rnorm(10,3,1)) data = data[abs(data)<2*sd(data)] prior = function(x){ dgamma(x[2],shape=2,scale=1)*dnorm(x[1],0,.5) } liklihood = function(x,val){ prod(dnorm(val,m=x[1],sd=sqrt(.5/x[2])))#/(pnorm(2,x[1],x[2])-pnorm(-2,x[1],x[2]))^length(val) } unsc.post = function(x,val){ prior(x)*liklihood(x,val) } cons = adapt(2,c(-5,0),c(5,10),f=unsc.post,min=1e+04,max=5e+05,val=data) However, if I try to add a skewness parameter using sn as follows, I get an error. data = rnorm(20,0.2,1.1) data = c(data,rnorm(1,3,1)) data = data[abs(data)<2*sd(data)] prior = function(x){ dgamma(x[2],shape=2,scale=1)*dnorm(x[1],0,.5)*dnorm(x[3],0,.1) } liklihood = function(x,val){ prod(dsn(val,loc=x[1],sc=sqrt(.5/x[2]),sh=x[3])) } unsc.post = function(x,val){ prior(x)*liklihood(x,val) } cons = adapt(2,c(-5,0,-.5),c(5,10,.5),f=unsc.post,max=5e+05,val=data) This produces the error: *** caught segfault *** address 0x7eaa8580, cause 'memory not mapped' Traceback: 1: .C("cadapt", as.integer(ndim), as.double(lower), as.double(upper), minpts = as.integer(minpts), maxpts = as.integer(maxpts), ff, rho environment(), as.double(eps), relerr = double(1), lenwrk as.integer(lenwrk), value = double(1), ifail = integer(1), PACKAGE = "adapt") 2: adapt(2, c(-5, 0, -0.5), c(5, 10, 0.5), f = unsc.post, max = 5e+05, val = data) On a perhaps related note, if I increase the length of data to 1000+10 in the original example, I get a garbage answer and: Warning message: Ifail=2, lenwrk was too small. -- fix adapt() ! Check the returned relerr! in: adapt(2, c(-5, 0), c(5, 10), f = unsc.post, min = 10000, max = 5e+05. And If I uncomment the line there with data size 100+10, adapt takes forever and gives me an error saying maxpts is too low (I don't think this is related to the previous problem, but I thought I'd provide the information in case it is useful). Any help would be greatly appreciated. Thanks, Omkar Muralidharan [[alternative HTML version deleted]]