Tom Cameron
2007-Nov-07 18:19 UTC
[R] Help please with predict.lme from nlme with nested random effects
Apologies for long posting but with this one I thought you would want all the details. I have tried all the usual books and searched internet and R pages but I cant find an example of an analysis with this problem and no examples of the predict function being used with lme models that have nested random terms. I am trying to predict the average size at maturation of the average individual from a random family within a random population that has matured at a random density. These predictions are based on a model that is tested against data from a an experiment looking at the age and size at maturation of individuals receiving different rearing food (food = 1 or 2), from populations of different backgrounds (env = C(constant) or P(periodic), har = o (unharvested) or 1(harvested)). Data copied below. To do this I have built the following model using the nlme library lmeS<-lme(log(size)~log(age)+env*har*food, random=~1|pop/family/density) with pop<-as.factor(data1$pop) family<-as.factor(data1$family) har<-as.factor(data1$har) env<-as.factor(data1$env) age<-as.numeric(data1$age) food<-as.factor(data1$food) density<-as.numeric(data1$density) There are two replicate populations for each env/har/food combination, 7 randomaly chosen families from each and the density of the tube on the day that an individual matures is dependent on mortality and previous maturations( individuals are removed upon mauration). This would appear to be the minimal and correct model I then built a new data set as follows envn<-rep(c("C","P"),1,each=560) harn<-rep(c(0,1),2,each=280) popn<-rep(c(5, 6, 11, 12, 41, 42, 47, 48),each=140) repn<-rep(c(1,2,3,4,5,6,7),40,each=4) foodn<-rep(c(2,1,1,1,1),8,each=28) densn<-rep(c(5,10,15,20),280) agen<-rep(c(5,10,15,20,25),8,each=28) NB:food and age are not balanced as when food = 2(high), individuals mature early, when food = 1(low) they have a minimum maturation age of about 8-10 days) I then used predict to try and capture what the expected size at maturity is for a given age in the two food groups, based on past evolutionary environment (i.e. env*har), when controlling for the random terms. If I build a model with density as a fixed effect it is very significant, or if I just build a linear model then I get different size predictions at the different densities. However, I have tried predict.lme for the same aim (see below) but density makes no difference to the predictions I can either get a single output that does not vary with densities from "lmeSpred" or two columns of output which give me the fitted fixed effects and separately the fitted effects of pop, but they are identcal with lmeSpred2 or 3. lmeSnew<-data.frame(env=factor(envn), har=factor(harn), pop=factor(popn),family=factor(repn),food=factor(foodn),density=densn, age=agen) lmeSpred<-predict(lmeS,lmeSnew, level= 1:1,na.action=na.omit) #or lmeSpred2<-predict(lmeS,lmeSnew, level= 0:1,na.action=na.omit) #or lmeSpred3<-predict(lmeS,lmeSnew, level= 0:1/1/1,na.action=na.omit) x<-data.frame(lmeSpred) x Can anyone tell me what I am doing wrong, and how I can get the predicts to tell me the effect of random density on size, or to give me the predicts for a specified control density? data1 pop env har food family sex density size age 5 C 0 2 1 1 18 0.823 5 5 C 0 2 1 1 14 0.966 6 5 C 0 2 1 1 14 0.983 6 5 C 0 2 1 1 14 1.021 6 5 C 0 2 1 1 14 0.776 6 5 C 0 2 1 1 14 0.843 6 5 C 0 2 1 1 14 0.798 6 5 C 0 2 1 1 14 0.921 6 5 C 0 2 2 1 20 0.821 5 5 C 0 2 2 1 20 0.859 5 5 C 0 2 2 1 17 0.783 6 5 C 0 2 2 1 17 1.049 6 5 C 0 2 2 1 17 0.930 6 5 C 0 2 2 1 17 0.848 6 5 C 0 2 2 1 17 0.933 6 5 C 0 2 2 1 17 0.866 6 5 C 0 2 2 1 1 0.938 7 5 C 0 2 3 1 20 0.838 5 5 C 0 2 3 1 16 0.876 6 5 C 0 2 3 1 16 0.749 6 5 C 0 2 3 1 16 0.932 6 5 C 0 2 3 1 16 0.976 6 5 C 0 2 3 1 16 0.848 6 5 C 0 2 3 1 16 0.948 6 5 C 0 2 3 1 16 0.849 6 5 C 0 2 3 1 16 0.824 6 5 C 0 2 3 1 16 0.921 6 5 C 0 2 3 1 16 0.917 6 5 C 0 2 4 1 20 0.996 5 5 C 0 2 4 1 20 0.891 5 5 C 0 2 4 1 20 1.014 5 5 C 0 2 4 1 20 0.883 5 5 C 0 2 4 1 20 0.883 5 5 C 0 2 4 1 10 1.178 6 5 C 0 2 4 1 10 1.067 6 5 C 0 2 5 1 18 0.969 5 5 C 0 2 5 1 18 0.892 5 5 C 0 2 5 1 18 0.911 5 5 C 0 2 5 1 18 0.826 5 5 C 0 2 5 1 18 0.840 5 5 C 0 2 5 1 9 0.958 6 5 C 0 2 5 1 9 1.077 6 5 C 0 2 5 1 9 1.015 6 5 C 0 2 6 1 19 0.816 5 5 C 0 2 6 1 19 0.925 5 5 C 0 2 6 1 19 0.910 5 5 C 0 2 6 1 19 0.909 5 5 C 0 2 6 1 19 0.875 5 5 C 0 2 6 1 19 0.910 5 5 C 0 2 6 1 7 1.015 6 5 C 0 2 6 1 7 0.937 6 5 C 0 2 6 1 7 0.985 6 5 C 0 2 7 1 14 0.922 5 5 C 0 2 7 1 12 0.764 6 5 C 0 2 7 1 12 0.997 6 5 C 0 2 7 1 12 0.998 6 5 C 0 2 7 1 12 0.870 6 5 C 0 2 7 1 12 0.928 6 5 C 0 2 7 1 12 1.047 6 5 C 0 2 7 1 12 1.047 6 5 C 0 1 1 1 12 0.603 13 5 C 0 1 1 1 9 0.617 16 5 C 0 1 1 1 6 0.633 17 5 C 0 1 1 1 4 0.635 18 5 C 0 1 1 1 2 0.667 19 5 C 0 1 1 1 2 0.701 19 5 C 0 1 2 1 17 0.679 13 5 C 0 1 2 1 17 0.681 13 5 C 0 1 2 1 11 0.640 15 5 C 0 1 2 1 10 0.625 17 5 C 0 1 2 1 10 0.605 17 5 C 0 1 2 1 10 0.624 17 5 C 0 1 2 1 6 0.476 19 5 C 0 1 2 1 6 0.665 19 5 C 0 1 2 1 3 0.622 20 5 C 0 1 2 1 2 0.754 21 5 C 0 1 2 1 1 0.875 23 5 C 0 1 3 1 16 0.612 13 5 C 0 1 3 1 16 0.646 13 5 C 0 1 3 1 14 0.674 17 5 C 0 1 3 1 14 0.685 17 5 C 0 1 3 1 14 0.625 17 5 C 0 1 3 1 14 0.611 17 5 C 0 1 3 1 10 0.675 18 5 C 0 1 3 1 5 0.731 23 5 C 0 1 3 1 5 0.580 23 5 C 0 1 4 1 18 0.675 9 5 C 0 1 4 1 17 0.686 11 5 C 0 1 4 1 14 0.598 13 5 C 0 1 4 1 13 0.631 17 5 C 0 1 4 1 13 0.692 17 5 C 0 1 4 1 8 0.619 19 5 C 0 1 4 1 8 0.654 19 5 C 0 1 4 1 4 0.630 21 5 C 0 1 4 1 2 0.656 22 5 C 0 1 5 1 9 0.460 8 5 C 0 1 5 1 9 0.463 8 5 C 0 1 5 1 9 0.464 8 5 C 0 1 5 1 9 0.464 8 5 C 0 1 5 1 7 0.607 11 5 C 0 1 5 1 7 0.611 11 5 C 0 1 5 1 7 0.674 11 5 C 0 1 5 1 2 0.609 13 5 C 0 1 6 1 15 0.624 11 5 C 0 1 6 1 14 0.617 17 5 C 0 1 6 1 14 0.643 17 5 C 0 1 6 1 11 0.604 18 5 C 0 1 6 1 11 0.610 18 5 C 0 1 6 1 11 0.649 18 5 C 0 1 6 1 11 0.594 18 5 C 0 1 6 1 3 0.790 20 5 C 0 1 7 1 16 0.648 10 5 C 0 1 7 1 9 0.733 11 5 C 0 1 7 1 9 0.675 11 5 C 0 1 7 1 9 0.648 11 5 C 0 1 7 1 3 0.804 17 5 C 0 1 7 1 3 0.757 17 5 C 0 1 7 1 1 0.763 19 6 C 0 2 1 1 20 0.832 6 6 C 0 2 1 1 20 1.007 6 6 C 0 2 1 1 20 0.903 6 6 C 0 2 1 1 13 0.976 7 6 C 0 2 1 1 13 0.902 7 6 C 0 2 1 1 13 0.895 7 6 C 0 2 2 1 20 0.791 6 6 C 0 2 2 1 20 0.784 6 6 C 0 2 2 1 20 0.861 6 6 C 0 2 2 1 9 0.976 7 6 C 0 2 2 1 9 0.891 7 6 C 0 2 2 1 9 0.995 7 6 C 0 2 2 1 9 0.947 7 6 C 0 2 3 1 15 0.864 7 6 C 0 2 3 1 15 0.922 7 6 C 0 2 3 1 15 0.849 7 6 C 0 2 3 1 15 0.944 7 6 C 0 2 3 1 15 0.975 7 6 C 0 2 3 1 15 1.040 7 6 C 0 2 3 1 15 0.885 7 6 C 0 2 3 1 15 0.928 7 6 C 0 2 3 1 15 0.849 7 6 C 0 2 3 1 4 0.872 8 6 C 0 2 3 1 4 0.898 8 6 C 0 2 4 1 20 0.840 6 6 C 0 2 4 1 12 0.884 7 6 C 0 2 4 1 12 0.855 7 6 C 0 2 4 1 12 0.853 7 6 C 0 2 4 1 12 0.857 7 6 C 0 2 4 1 12 0.812 7 6 C 0 2 4 1 12 0.834 7 6 C 0 2 4 1 12 0.797 7 6 C 0 2 4 1 12 0.904 7 6 C 0 2 5 1 19 0.823 7 6 C 0 2 5 1 19 0.895 7 6 C 0 2 5 1 19 0.875 7 6 C 0 2 5 1 19 0.822 7 6 C 0 2 5 1 19 0.899 7 6 C 0 2 5 1 19 0.971 7 6 C 0 2 5 1 19 0.944 7 6 C 0 2 5 1 19 0.926 7 6 C 0 2 5 1 19 0.933 7 6 C 0 2 5 1 19 0.913 7 6 C 0 2 5 1 1 0.928 8 6 C 0 2 6 1 21 0.925 6 6 C 0 2 6 1 21 0.884 6 6 C 0 2 6 1 21 0.887 6 6 C 0 2 6 1 10 0.919 7 6 C 0 2 6 1 10 0.979 7 6 C 0 2 6 1 10 1.106 7 6 C 0 2 6 1 10 0.989 7 6 C 0 2 7 1 20 1.020 6 6 C 0 2 7 1 18 1.084 7 6 C 0 2 7 1 18 1.050 7 6 C 0 2 7 1 18 0.989 7 6 C 0 2 7 1 18 0.909 7 6 C 0 2 7 1 18 0.878 7 6 C 0 2 7 1 18 0.994 7 6 C 0 1 1 1 17 0.683 10 6 C 0 1 1 1 15 0.642 13 6 C 0 1 1 1 15 0.622 13 6 C 0 1 1 1 13 0.646 17 6 C 0 1 1 1 9 0.686 19 6 C 0 1 1 1 9 0.648 19 6 C 0 1 1 1 6 0.610 20 6 C 0 1 1 1 5 0.742 21 6 C 0 1 1 1 5 0.734 21 6 C 0 1 1 1 1 0.698 22 6 C 0 1 2 1 20 0.585 19 6 C 0 1 2 1 17 0.599 20 6 C 0 1 2 1 15 0.557 21 6 C 0 1 2 1 14 0.596 22 6 C 0 1 2 1 7 0.712 23 6 C 0 1 2 1 7 0.629 23 6 C 0 1 2 1 7 0.641 23 6 C 0 1 3 1 12 0.746 10 6 C 0 1 3 1 8 0.672 12 6 C 0 1 3 1 8 0.753 12 6 C 0 1 3 1 3 0.692 17 6 C 0 1 3 1 3 0.638 17 6 C 0 1 4 1 10 0.699 13 6 C 0 1 4 1 10 0.675 13 6 C 0 1 4 1 8 0.632 15 6 C 0 1 4 1 7 0.724 16 6 C 0 1 4 1 5 0.858 17 6 C 0 1 4 1 5 0.790 17 6 C 0 1 4 1 5 0.770 17 6 C 0 1 4 1 5 0.800 17 6 C 0 1 5 1 12 0.704 11 6 C 0 1 5 1 8 0.648 18 6 C 0 1 5 1 6 0.719 19 6 C 0 1 5 1 6 0.603 19 6 C 0 1 5 1 6 0.661 19 6 C 0 1 5 1 2 0.837 23 6 C 0 1 5 1 2 0.741 23 6 C 0 1 6 1 16 0.594 11 6 C 0 1 6 1 16 0.617 11 6 C 0 1 6 1 16 0.572 11 6 C 0 1 6 1 16 0.672 11 6 C 0 1 6 1 10 0.614 12 6 C 0 1 6 1 10 0.682 12 6 C 0 1 6 1 8 0.582 13 6 C 0 1 6 1 8 0.620 13 6 C 0 1 6 1 2 0.770 17 6 C 0 1 7 1 13 0.708 11 6 C 0 1 7 1 9 0.617 13 6 C 0 1 7 1 8 0.649 17 6 C 0 1 7 1 6 0.687 18 6 C 0 1 7 1 6 0.635 18 6 C 0 1 7 1 4 0.700 20 6 C 0 1 7 1 4 0.715 20 6 C 0 1 7 1 4 0.673 20 6 C 0 1 7 1 4 0.528 20 11 C 1 2 1 1 20 0.856 6 11 C 1 2 1 1 20 0.812 6 11 C 1 2 1 1 20 0.792 6 11 C 1 2 1 1 20 0.807 6 11 C 1 2 1 1 11 0.954 7 11 C 1 2 1 1 11 0.997 7 11 C 1 2 1 1 11 0.936 7 11 C 1 2 1 1 11 0.890 7 11 C 1 2 1 1 11 1.005 7 11 C 1 2 1 1 11 1.036 7 11 C 1 2 2 1 18 0.847 5 11 C 1 2 2 1 18 0.956 5 11 C 1 2 2 1 16 0.951 6 11 C 1 2 2 1 16 0.836 6 11 C 1 2 2 1 10 1.073 7 11 C 1 2 2 1 10 0.919 7 11 C 1 2 2 1 10 0.885 7 11 C 1 2 2 1 10 1.034 7 11 C 1 1 2 1 2 1.032 9 11 C 1 1 2 1 2 1.016 9 11 C 1 2 3 1 18 0.801 6 11 C 1 2 3 1 18 0.831 6 11 C 1 2 3 1 18 0.830 6 11 C 1 2 3 1 18 0.758 6 11 C 1 2 3 1 12 0.990 7 11 C 1 2 3 1 12 0.981 7 11 C 1 2 3 1 12 1.032 7 11 C 1 2 3 1 12 0.995 7 11 C 1 2 3 1 12 1.016 7 11 C 1 2 3 1 12 1.010 7 11 C 1 2 3 1 12 0.967 7 11 C 1 2 3 1 12 0.999 7 11 C 1 2 4 1 16 0.806 5 11 C 1 2 4 1 15 1.045 6 11 C 1 2 4 1 15 1.008 6 11 C 1 2 4 1 15 0.974 6 11 C 1 2 4 1 15 0.869 6 11 C 1 2 4 1 15 0.801 6 11 C 1 2 4 1 15 0.952 6 11 C 1 2 4 1 15 0.879 6 11 C 1 2 4 1 15 0.953 6 11 C 1 2 4 1 15 0.792 6 11 C 1 2 4 1 2 0.927 7 11 C 1 2 5 1 20 0.795 5 11 C 1 2 5 1 20 1.027 5 11 C 1 2 5 1 20 0.737 5 11 C 1 2 5 1 20 0.814 5 11 C 1 2 5 1 20 0.895 5 11 C 1 2 5 1 20 0.886 5 11 C 1 2 5 1 20 0.933 5 11 C 1 2 5 1 20 0.765 5 11 C 1 2 5 1 20 0.781 5 11 C 1 2 5 1 3 0.847 6 11 C 1 1 1 1 16 0.868 9 11 C 1 1 1 1 14 0.650 12 11 C 1 1 1 1 14 0.670 12 11 C 1 1 1 1 11 0.631 13 11 C 1 1 1 1 8 0.638 14 11 C 1 1 1 1 8 0.677 14 11 C 1 1 1 1 5 0.568 15 11 C 1 1 1 1 4 0.653 16 11 C 1 1 1 1 2 0.795 19 11 C 1 1 3 1 8 0.776 7 11 C 1 1 3 1 6 0.659 9 11 C 1 1 3 1 2 0.684 12 11 C 1 1 3 1 2 0.688 12 11 C 1 1 3 1 2 0.762 13 11 C 1 1 3 1 2 0.769 13 11 C 1 1 4 1 15 0.651 7 11 C 1 1 4 1 14 0.588 9 11 C 1 1 4 1 12 0.629 10 11 C 1 1 4 1 11 0.672 11 11 C 1 1 4 1 11 0.623 11 11 C 1 1 4 1 9 0.638 12 11 C 1 1 4 1 2 0.662 14 11 C 1 1 6 1 13 0.694 9 11 C 1 1 6 1 6 0.789 13 11 C 1 1 6 1 3 0.735 15 11 C 1 1 6 1 1 0.787 18 11 C 1 1 7 1 20 0.631 8 11 C 1 1 7 1 17 0.609 11 11 C 1 1 7 1 12 0.678 14 11 C 1 1 7 1 10 0.677 15 11 C 1 1 7 1 8 0.578 16 11 C 1 1 7 1 4 0.634 18 11 C 1 1 7 1 2 0.681 19 12 C 1 2 2 1 20 0.960 5 12 C 1 2 2 1 16 0.909 6 12 C 1 2 2 1 16 0.822 6 12 C 1 2 2 1 16 0.895 6 12 C 1 2 2 1 16 0.962 6 12 C 1 2 2 1 16 0.812 6 12 C 1 2 2 1 3 0.929 7 12 C 1 2 3 1 18 0.614 5 12 C 1 2 3 1 18 0.715 5 12 C 1 2 3 1 18 0.693 5 12 C 1 2 3 1 14 0.933 8 12 C 1 2 3 1 14 0.904 8 12 C 1 2 3 1 14 0.896 8 12 C 1 2 3 1 14 0.921 8 12 C 1 2 3 1 14 0.953 8 12 C 1 2 3 1 14 0.907 8 12 C 1 2 3 1 14 0.830 8 12 C 1 2 4 1 17 0.799 8 12 C 1 2 4 1 17 0.798 8 12 C 1 2 4 1 17 0.901 8 12 C 1 2 4 1 17 0.865 8 12 C 1 2 4 1 17 0.726 8 12 C 1 2 4 1 17 0.744 8 12 C 1 2 4 1 17 0.866 8 12 C 1 2 4 1 6 0.981 9 12 C 1 2 4 1 6 0.789 9 12 C 1 2 4 1 6 1.033 9 12 C 1 2 5 1 19 0.764 6 12 C 1 2 5 1 19 0.752 6 12 C 1 2 5 1 19 0.744 6 12 C 1 2 5 1 19 0.801 6 12 C 1 2 5 1 19 0.769 6 12 C 1 2 5 1 19 0.783 6 12 C 1 2 5 1 10 0.980 7 12 C 1 2 5 1 10 0.962 7 12 C 1 2 5 1 10 0.965 7 12 C 1 2 5 1 10 0.946 7 12 C 1 2 6 1 2 0.997 7 12 C 1 1 1 1 11 0.644 8 12 C 1 1 1 1 10 0.735 9 12 C 1 1 1 1 8 0.608 10 12 C 1 1 1 1 6 0.681 11 12 C 1 1 1 1 3 0.726 12 12 C 1 1 3 1 18 0.591 8 12 C 1 1 3 1 14 0.767 9 12 C 1 1 3 1 12 0.724 10 12 C 1 1 3 1 12 0.686 10 12 C 1 1 3 1 10 0.853 11 12 C 1 1 3 1 10 0.743 11 12 C 1 1 3 1 10 0.780 11 12 C 1 1 3 1 10 0.654 11 12 C 1 1 3 1 10 0.781 11 12 C 1 1 3 1 3 0.675 12 12 C 1 1 3 1 3 0.639 12 12 C 1 1 3 1 4 0.746 13 12 C 1 1 3 1 4 0.723 13 12 C 1 1 3 1 1 0.771 14 12 C 1 1 4 1 11 0.708 9 12 C 1 1 4 1 7 0.681 12 12 C 1 1 4 1 3 0.576 14 41 P 0 2 1 1 20 0.824 7 41 P 0 2 1 1 20 0.892 7 41 P 0 2 1 1 14 0.872 8 41 P 0 2 1 1 14 0.764 8 41 P 0 2 1 1 14 0.783 8 41 P 0 2 1 1 14 0.782 8 41 P 0 2 1 1 14 0.754 8 41 P 0 2 2 1 17 0.789 6 41 P 0 2 2 1 16 0.984 7 41 P 0 2 2 1 16 0.913 7 41 P 0 2 2 1 16 0.831 7 41 P 0 2 2 1 16 0.943 7 41 P 0 2 2 1 16 0.966 7 41 P 0 2 2 1 16 1.017 7 41 P 0 2 2 1 16 0.934 7 41 P 0 2 2 1 16 0.962 7 41 P 0 2 2 1 3 0.689 8 41 P 0 2 2 1 3 0.773 8 41 P 0 2 3 1 18 0.649 7 41 P 0 2 3 1 18 0.742 7 41 P 0 2 3 1 18 0.809 7 41 P 0 2 3 1 18 0.773 7 41 P 0 2 3 1 18 0.855 7 41 P 0 2 3 1 18 0.747 7 41 P 0 2 3 1 18 0.816 7 41 P 0 2 3 1 6 0.828 8 41 P 0 2 3 1 6 0.798 8 41 P 0 2 3 1 6 0.837 8 41 P 0 2 3 1 6 0.761 8 41 P 0 2 3 1 6 0.834 8 41 P 0 2 4 1 17 0.875 7 41 P 0 2 4 1 17 0.789 7 41 P 0 2 4 1 17 0.912 7 41 P 0 2 4 1 7 0.809 8 41 P 0 2 4 1 7 0.739 8 41 P 0 2 4 1 2 0.745 9 41 P 0 2 5 1 14 0.868 5 41 P 0 2 5 1 14 0.802 5 41 P 0 2 5 1 14 0.828 5 41 P 0 2 5 1 14 0.863 5 41 P 0 2 5 1 7 0.894 6 41 P 0 2 5 1 7 0.872 6 41 P 0 2 5 1 7 1.029 6 41 P 0 2 5 1 7 0.871 6 41 P 0 2 6 1 2 1.200 7 41 P 0 2 7 1 15 0.899 5 41 P 0 2 7 1 15 0.935 5 41 P 0 2 7 1 15 0.994 5 41 P 0 2 7 1 15 0.879 5 41 P 0 2 7 1 15 1.052 5 41 P 0 2 7 1 15 1.066 5 41 P 0 2 7 1 5 1.002 6 41 P 0 2 7 1 1 0.952 9 41 P 0 1 1 1 17 0.686 12 41 P 0 1 1 1 13 0.690 15 41 P 0 1 1 1 9 0.743 17 41 P 0 1 1 1 9 0.826 17 41 P 0 1 2 1 14 0.625 12 41 P 0 1 2 1 14 0.671 12 41 P 0 1 2 1 14 0.771 12 41 P 0 1 2 1 5 0.632 14 41 P 0 1 2 1 5 0.612 14 41 P 0 1 2 1 5 0.695 14 41 P 0 1 2 1 1 0.874 17 41 P 0 1 3 1 16 0.604 12 41 P 0 1 3 1 11 0.591 14 41 P 0 1 3 1 10 0.666 16 41 P 0 1 3 1 6 0.748 17 41 P 0 1 3 1 6 0.722 17 41 P 0 1 4 1 16 0.615 12 41 P 0 1 4 1 8 0.607 14 41 P 0 1 4 1 8 0.574 14 41 P 0 1 4 1 5 0.677 16 41 P 0 1 4 1 4 0.804 17 41 P 0 1 5 1 19 0.762 9 41 P 0 1 5 1 9 0.642 17 41 P 0 1 5 1 9 0.775 17 41 P 0 1 5 1 3 0.606 18 41 P 0 1 5 1 3 0.675 19 41 P 0 1 5 1 3 0.637 19 41 P 0 1 5 1 1 0.735 21 41 P 0 1 6 1 14 0.629 12 41 P 0 1 6 1 14 0.576 12 41 P 0 1 6 1 10 0.633 14 41 P 0 1 6 1 8 0.606 17 41 P 0 1 6 1 8 0.559 17 41 P 0 1 6 1 3 0.627 18 41 P 0 1 6 1 3 0.642 18 41 P 0 1 7 1 4 0.713 14 42 P 0 2 1 1 19 1.018 6 42 P 0 2 1 1 19 0.986 6 42 P 0 2 1 1 19 1.025 6 42 P 0 2 1 1 19 0.916 6 42 P 0 2 1 1 19 0.838 6 42 P 0 2 1 1 5 1.141 7 42 P 0 2 1 1 5 0.987 7 42 P 0 2 1 1 5 1.074 7 42 P 0 2 1 1 5 1.067 7 42 P 0 2 2 1 18 0.937 6 42 P 0 2 2 1 11 1.040 7 42 P 0 2 2 1 11 1.075 7 42 P 0 2 2 1 11 0.922 7 42 P 0 2 2 1 11 1.123 7 42 P 0 2 2 1 11 1.163 7 42 P 0 2 2 1 11 1.079 7 42 P 0 2 3 1 18 0.907 6 42 P 0 2 3 1 18 0.909 6 42 P 0 2 3 1 18 0.857 6 42 P 0 2 3 1 18 0.931 6 42 P 0 2 3 1 18 0.797 6 42 P 0 2 3 1 18 0.748 6 42 P 0 2 3 1 18 0.893 6 42 P 0 2 3 1 18 0.836 6 42 P 0 2 3 1 2 0.816 7 42 P 0 2 4 1 16 1.007 6 42 P 0 2 4 1 16 0.890 6 42 P 0 2 4 1 16 0.798 6 42 P 0 2 4 1 16 0.867 6 42 P 0 2 4 1 16 0.865 6 42 P 0 2 4 1 8 0.986 7 42 P 0 2 4 1 8 0.911 7 42 P 0 2 4 1 8 0.892 7 42 P 0 2 5 1 20 0.770 6 42 P 0 2 5 1 20 0.937 6 42 P 0 2 5 1 20 0.768 6 42 P 0 2 5 1 20 0.775 6 42 P 0 2 5 1 20 0.828 6 42 P 0 2 5 1 20 0.731 6 42 P 0 2 5 1 5 0.849 7 42 P 0 2 5 1 5 0.923 7 42 P 0 2 6 1 20 0.872 5 42 P 0 2 6 1 20 0.926 5 42 P 0 2 6 1 20 0.820 5 42 P 0 2 6 1 16 0.986 6 42 P 0 2 6 1 16 0.889 6 42 P 0 2 6 1 16 0.875 6 42 P 0 2 6 1 16 0.962 6 42 P 0 2 6 1 16 0.932 6 42 P 0 2 6 1 16 0.904 6 42 P 0 2 6 1 16 0.955 6 42 P 0 2 6 1 16 0.877 6 42 P 0 2 6 1 16 0.936 6 42 P 0 2 6 1 16 0.961 6 42 P 0 2 6 1 3 1.152 7 42 P 0 2 6 1 2 0.927 8 42 P 0 2 7 1 15 0.773 7 42 P 0 2 7 1 15 0.917 7 42 P 0 2 7 1 15 0.692 7 42 P 0 2 7 1 15 0.811 7 42 P 0 2 7 1 7 0.918 8 42 P 0 2 7 1 7 0.814 8 42 P 0 2 7 1 7 0.938 8 42 P 0 2 7 1 7 0.885 8 42 P 0 2 7 1 7 0.873 8 42 P 0 1 1 1 18 0.691 10 42 P 0 1 1 1 17 0.688 11 42 P 0 1 1 1 17 0.681 11 42 P 0 1 1 1 12 0.698 13 42 P 0 1 1 1 9 0.722 17 42 P 0 1 1 1 9 0.771 17 42 P 0 1 1 1 5 0.850 18 42 P 0 1 1 1 5 0.669 18 42 P 0 1 1 1 5 0.667 18 42 P 0 1 1 1 1 0.840 20 42 P 0 1 2 1 10 0.630 9 42 P 0 1 2 1 8 0.659 11 42 P 0 1 2 1 8 0.640 11 42 P 0 1 2 1 4 0.722 13 42 P 0 1 2 1 3 0.625 14 42 P 0 1 2 1 3 0.624 14 42 P 0 1 2 1 1 0.751 22 42 P 0 1 3 1 14 0.683 11 42 P 0 1 3 1 14 0.666 11 42 P 0 1 3 1 14 0.623 11 42 P 0 1 3 1 8 0.689 14 42 P 0 1 3 1 2 0.831 17 42 P 0 1 3 1 2 0.853 17 42 P 0 1 4 1 10 0.684 8 42 P 0 1 4 1 10 0.684 8 42 P 0 1 4 1 6 0.648 9 42 P 0 1 4 1 6 0.697 12 42 P 0 1 4 1 6 0.680 12 42 P 0 1 4 1 6 0.834 12 42 P 0 1 4 1 6 0.753 12 42 P 0 1 4 1 1 0.791 13 42 P 0 1 5 1 16 0.685 11 42 P 0 1 5 1 14 0.678 12 42 P 0 1 5 1 14 0.629 13 42 P 0 1 5 1 13 0.681 13 42 P 0 1 5 1 13 0.632 13 42 P 0 1 5 1 13 0.701 13 42 P 0 1 5 1 8 0.687 17 42 P 0 1 5 1 8 0.609 17 42 P 0 1 5 1 8 0.696 17 42 P 0 1 5 1 4 0.679 18 42 P 0 1 5 1 3 0.667 19 42 P 0 1 5 1 2 0.840 20 42 P 0 1 5 1 2 0.717 20 42 P 0 1 6 1 13 0.682 9 42 P 0 1 6 1 13 0.688 11 42 P 0 1 6 1 9 0.648 13 42 P 0 1 6 1 9 0.758 13 42 P 0 1 6 1 7 0.754 14 42 P 0 1 6 1 7 0.725 14 42 P 0 1 6 1 7 0.655 14 42 P 0 1 6 1 7 0.736 14 42 P 0 1 6 1 7 0.683 14 42 P 0 1 6 1 7 0.701 14 42 P 0 1 7 1 11 0.675 11 42 P 0 1 7 1 11 0.661 11 42 P 0 1 7 1 11 0.633 11 42 P 0 1 7 1 8 0.726 12 42 P 0 1 7 1 6 0.662 14 47 P 1 2 1 1 18 0.717 6 47 P 1 2 1 1 18 0.763 6 47 P 1 2 1 1 18 0.822 6 47 P 1 2 1 1 18 0.732 6 47 P 1 2 1 1 18 0.765 6 47 P 1 2 1 1 10 0.852 7 47 P 1 2 1 1 10 0.838 7 47 P 1 2 1 1 10 0.867 7 47 P 1 2 1 1 10 0.777 7 47 P 1 2 1 1 10 0.829 7 47 P 1 2 2 1 11 0.960 6 47 P 1 2 2 1 11 1.057 6 47 P 1 2 2 1 11 1.120 6 47 P 1 2 2 1 11 1.040 6 47 P 1 2 2 1 2 0.929 7 47 P 1 2 3 1 19 0.838 6 47 P 1 2 3 1 19 0.926 6 47 P 1 2 3 1 19 0.824 6 47 P 1 2 3 1 19 0.874 6 47 P 1 2 3 1 19 0.781 6 47 P 1 2 3 1 19 0.775 6 47 P 1 2 3 1 19 0.952 6 47 P 1 2 3 1 19 0.816 6 47 P 1 2 3 1 19 0.809 6 47 P 1 2 3 1 5 0.735 7 47 P 1 2 3 1 5 0.874 7 47 P 1 2 3 1 5 0.744 7 47 P 1 2 3 1 1 0.948 8 47 P 1 2 4 1 20 0.924 6 47 P 1 2 4 1 20 0.789 6 47 P 1 2 4 1 20 0.957 6 47 P 1 2 4 1 20 0.922 6 47 P 1 2 4 1 20 0.891 6 47 P 1 2 4 1 20 0.972 6 47 P 1 2 4 1 20 0.862 6 47 P 1 2 4 1 20 0.899 6 47 P 1 2 4 1 7 0.927 7 47 P 1 2 4 1 7 0.863 7 47 P 1 2 4 1 7 0.968 7 47 P 1 2 4 1 7 0.931 7 47 P 1 2 5 1 20 0.835 6 47 P 1 2 5 1 20 0.851 6 47 P 1 2 5 1 20 0.835 6 47 P 1 2 5 1 20 0.808 6 47 P 1 2 5 1 20 0.849 6 47 P 1 2 5 1 20 0.763 6 47 P 1 2 5 1 20 0.759 6 47 P 1 2 5 1 20 0.765 6 47 P 1 2 5 1 20 0.903 6 47 P 1 2 5 1 7 0.786 7 47 P 1 2 6 1 19 0.792 6 47 P 1 2 6 1 19 0.885 6 47 P 1 2 6 1 19 0.816 6 47 P 1 2 6 1 19 0.769 6 47 P 1 2 6 1 19 0.865 6 47 P 1 2 6 1 19 0.874 6 47 P 1 2 6 1 7 0.777 7 47 P 1 2 6 1 7 0.878 7 47 P 1 2 6 1 7 0.808 7 47 P 1 2 6 1 7 0.877 7 47 P 1 2 7 1 14 0.944 6 47 P 1 2 7 1 14 0.936 6 47 P 1 2 7 1 14 0.999 6 47 P 1 2 7 1 14 0.877 6 47 P 1 2 7 1 14 0.820 6 47 P 1 2 7 1 14 0.844 6 47 P 1 2 7 1 4 0.882 7 47 P 1 2 7 1 4 0.911 7 47 P 1 2 7 1 4 0.962 7 47 P 1 1 1 1 18 0.775 9 47 P 1 1 1 1 18 0.738 10 47 P 1 1 1 1 18 0.720 10 47 P 1 1 1 1 12 0.639 16 47 P 1 1 1 1 4 0.662 18 47 P 1 1 1 1 3 0.744 20 47 P 1 1 1 1 2 0.807 21 47 P 1 1 2 1 19 0.735 6 47 P 1 1 2 1 18 0.759 9 47 P 1 1 2 1 18 0.765 9 47 P 1 1 2 1 18 0.717 9 47 P 1 1 2 1 10 0.724 12 47 P 1 1 2 1 10 0.711 12 47 P 1 1 2 1 8 0.768 13 47 P 1 1 2 1 2 0.735 18 47 P 1 1 3 1 10 0.599 13 47 P 1 1 3 1 9 0.637 14 47 P 1 1 3 1 8 0.635 15 47 P 1 1 3 1 4 0.671 18 47 P 1 1 3 1 3 0.658 20 47 P 1 1 3 1 1 0.743 22 47 P 1 1 4 1 13 0.761 11 47 P 1 1 4 1 12 0.679 13 47 P 1 1 4 1 9 0.592 14 47 P 1 1 4 1 9 0.596 14 47 P 1 1 4 1 6 0.631 15 47 P 1 1 4 1 6 0.705 15 47 P 1 1 4 1 1 0.647 17 47 P 1 1 5 1 14 0.7 11 47 P 1 1 5 1 11 0.663 12 47 P 1 1 5 1 7 0.673 13 47 P 1 1 5 1 5 0.665 14 47 P 1 1 5 1 5 0.616 14 47 P 1 1 5 1 3 0.713 15 47 P 1 1 6 1 15 0.785 9 47 P 1 1 6 1 15 0.665 11 47 P 1 1 6 1 5 0.752 18 47 P 1 1 6 1 5 0.74 18 47 P 1 1 6 1 3 0.712 19 47 P 1 1 6 1 3 0.903 19 47 P 1 1 7 1 12 0.639 15 47 P 1 1 7 1 5 0.742 16 47 P 1 1 7 1 4 0.627 17 47 P 1 1 7 1 3 0.555 18 47 P 1 1 7 1 2 0.707 19 48 P 1 2 1 1 20 0.785 6 48 P 1 2 1 1 15 0.927 7 48 P 1 2 1 1 15 0.696 7 48 P 1 2 1 1 15 0.917 7 48 P 1 2 1 1 15 0.883 7 48 P 1 2 1 1 15 0.882 7 48 P 1 2 1 1 15 0.728 7 48 P 1 2 1 1 15 0.799 7 48 P 1 2 1 1 15 0.822 7 48 P 1 2 1 1 2 0.935 8 48 P 1 2 1 1 2 0.926 8 48 P 1 2 2 1 17 0.777 6 48 P 1 2 2 1 17 0.868 6 48 P 1 2 2 1 17 0.771 6 48 P 1 2 2 1 17 0.772 6 48 P 1 2 2 1 17 0.852 6 48 P 1 2 2 1 17 0.825 6 48 P 1 2 2 1 17 0.856 6 48 P 1 2 2 1 17 0.823 6 48 P 1 2 2 1 6 0.915 7 48 P 1 2 2 1 6 0.967 7 48 P 1 2 2 1 6 0.843 7 48 P 1 2 2 1 6 0.913 7 48 P 1 2 3 1 20 0.904 6 48 P 1 2 3 1 17 0.923 7 48 P 1 2 3 1 17 0.885 7 48 P 1 2 3 1 17 0.873 7 48 P 1 2 3 1 17 0.886 7 48 P 1 2 3 1 17 0.899 7 48 P 1 2 3 1 17 0.861 7 48 P 1 2 3 1 17 0.857 7 48 P 1 2 3 1 17 0.821 7 48 P 1 2 3 1 17 0.872 7 48 P 1 2 3 1 2 0.935 8 48 P 1 2 4 1 19 0.914 5 48 P 1 2 4 1 19 1.035 5 48 P 1 2 4 1 19 0.830 5 48 P 1 2 4 1 13 0.961 6 48 P 1 2 4 1 13 1.100 6 48 P 1 2 4 1 13 0.921 6 48 P 1 2 4 1 13 0.941 6 48 P 1 2 4 1 13 0.929 6 48 P 1 2 4 1 2 0.779 7 48 P 1 2 5 1 18 0.826 6 48 P 1 2 5 1 18 0.979 6 48 P 1 2 5 1 18 0.922 6 48 P 1 2 5 1 18 0.888 6 48 P 1 2 5 1 18 0.975 6 48 P 1 2 5 1 18 0.859 6 48 P 1 2 5 1 18 0.991 6 48 P 1 2 5 1 18 0.858 6 48 P 1 2 5 1 18 0.853 6 48 P 1 2 5 1 18 1.098 6 48 P 1 2 5 1 18 0.904 6 48 P 1 2 6 1 17 0.670 6 48 P 1 2 6 1 17 0.749 6 48 P 1 2 6 1 17 0.720 6 48 P 1 2 6 1 17 0.798 6 48 P 1 2 6 1 17 0.776 6 48 P 1 2 6 1 10 0.837 7 48 P 1 2 6 1 10 0.842 7 48 P 1 2 6 1 10 0.801 7 48 P 1 2 6 1 1 0.948 8 48 P 1 2 7 1 17 0.914 7 48 P 1 2 7 1 17 0.838 7 48 P 1 2 7 1 17 0.974 7 48 P 1 2 7 1 17 0.835 7 48 P 1 2 7 1 17 0.807 7 48 P 1 2 7 1 17 0.852 7 48 P 1 2 7 1 17 0.888 7 48 P 1 2 7 1 17 0.874 7 48 P 1 2 7 1 17 0.834 7 48 P 1 2 7 1 17 0.756 7 48 P 1 1 1 1 13 0.634 10 48 P 1 1 1 1 12 0.791 11 48 P 1 1 1 1 11 0.767 13 48 P 1 1 1 1 8 0.617 14 48 P 1 1 1 1 6 0.889 15 48 P 1 1 1 1 6 0.763 15 48 P 1 1 1 1 2 0.738 18 48 P 1 1 1 1 2 0.744 18 48 P 1 1 2 1 18 0.637 12 48 P 1 1 2 1 18 0.611 13 48 P 1 1 2 1 10 0.614 14 48 P 1 1 2 1 9 0.639 15 48 P 1 1 2 1 9 0.808 15 48 P 1 1 2 1 9 0.686 15 48 P 1 1 3 1 12 0.799 8 48 P 1 1 3 1 7 0.749 9 48 P 1 1 3 1 7 0.882 9 48 P 1 1 3 1 1 0.739 12 48 P 1 1 4 1 18 0.626 9 48 P 1 1 4 1 17 0.643 10 48 P 1 1 4 1 12 0.626 11 48 P 1 1 4 1 10 0.706 13 48 P 1 1 4 1 8 0.689 14 48 P 1 1 4 1 7 0.641 15 48 P 1 1 4 1 7 0.751 15 48 P 1 1 4 1 7 0.769 15 48 P 1 1 5 1 18 0.718 9 48 P 1 1 5 1 18 0.745 9 48 P 1 1 5 1 15 0.608 11 48 P 1 1 5 1 14 0.667 12 48 P 1 1 5 1 11 0.652 14 48 P 1 1 5 1 10 0.611 15 48 P 1 1 5 1 4 0.676 18 48 P 1 1 6 1 9 0.814 9 48 P 1 1 6 1 9 0.666 9 48 P 1 1 6 1 7 0.642 11 48 P 1 1 7 1 19 0.659 9 48 P 1 1 7 1 18 0.765 11 48 P 1 1 7 1 6 0.699 18