Hi, I have been trying to run the code below. In the event of non-convergence, the statistic in the boot function returns NA as a value. To obtain a BCA confidence interval, I use boot.ci but, if NA recorded as a value for the statistic for one the replicates the following error appears: Error in if (const(t, min(1e-08, mean(t)/1e+06))) { : missing value where TRUE/FALSE needed To overcome this, I reformat the output of the bootstrap calculation by removing all instances of NA. By doing so the error message does not reappear but, I am suspicious of the results. When I run a simulation with 1000 iterations, the coverage probability is 1. Is this the correct approach for tackling NA values when using boot.ci? Thanks, Lucia library(boot) source(file = "http://www.uoguelph.ca/~lcostanz/mima1.ssc") # ----- Teo Dataset ----- studynum <-c(1, 2, 3, 4, 5, 6, 7) y <- c(-0.79851,-0.938269639,-1.252762968,-0.042559614,0.209720531,-2.249410331,-1.181993898) w <- c(0.644007,5.903041825,1.531728665,0.489578714,4.19421878,0.872663243,0.705810147) genData2<-data.frame(studynum, y, w) set.seed(4700) mima.func<-function(x, i) { x<-x[i,] # select obs. in bootstrap sample reREML<-mima1(x$y, 1/x$w, mods = c(), method = "REML", out="yes") if (length(reREML) == 0) { ests<-c(NA,NA) } else { ests<-c(reREML$b,reREML$vart) } } boot.teo4a<-boot(genData2, mima.func, R=2000,) ci.teo4<-boot.ci(boot.teo4a, conf = c(0.95), type = c("bca")) #remove all instances of NA boot.teo4 = boot.teo4a boot.teo4$t0 = na.omit(boot.teo4$t0) boot.teo4$t = na.omit(boot.teo4$t) boot.teo4$R = length(boot.teo4$t[,1]) boot.teo4$call[4] = boot.teo4$R ci.teo4<-boot.ci(boot.teo4, conf = c(0.95), type = c("bca"))