Lisa Solomon
2007-Jul-20 18:03 UTC
[R] Free Online: Data Mining Intro for Beginners, Vendor-Neutral
Intro to Data Mining for Absolute Beginners (no charge) This one-hour webinar is a perfect place to start if you are new to data mining and have little-to-no background in statistics or machine learning. -Dates: July 24, August 9, September 7 -Registration: http://salford.webex.com -Future Webinars: Multiple timezones and topics are planned. Let us know if you would like to be notified as we schedule new webinar dates and topics. -Abstract: In the one hour "Intro to Data Mining" webinar, we will discuss: **Data basics: what kind of data is required for data mining and predictive analytics; In what format must the data be; what steps are necessary to prepare data appropriately **What kinds of questions can we answer with data mining **How data mining models work: the inputs, the outputs, and the nature of the predictive mechanism **Evaluation criteria: how predictive models can be assessed and their value measured **Specific background knowledge to prepare you to begin a data mining project. Please circulate to colleagues who might benefit and do not hesitate to contact me if you have any questions. Sincerely, Lisa Solomon lisas at salford-systems.com Salford Systems, 4740 Murphy Canyon Rd. Ste 200, San Diego, Calif. 92123
In trying to get a better understanding of vectorization I wrote the following code: My objective is to take two sets of time series and calculate the correlations for each combination of time series. mat1 <- matrix(sample(1:500, 25), ncol = 5) mat2 <- matrix(sample(501:1000, 25), ncol = 5) Scenario 1: apply(mat1, 1, function(x) cor(mat1, mat2[1,])) Scenario 2: apply(mat1, 1, function(x) cor(mat1, mat2)) Using scenario 1, (output below) I can see that correlations are calculated for just the first row of mat2 against each individual row of mat1. Using scenario 2, (output below) I can see that correlations are calculated for each row of mat2 against each individual row of mat1. Q1: The output of scenario2 consists of 25 rows of data. Are the first five rows mat1 against mat2[1,], the next five rows mat1 against mat2[2,], ... last five rows mat1 against mat2[5,]? Q2: I assign the output of scenario 2 to a new matrix matC <- apply(mat1, 1, function(x) cor(mat1, mat2)) However, I need a way to identify each row in matC as a pairing of rows from mat1 and mat2. Is there a parameter I can add to apply to do this? Scenario 1:> apply(mat1, 1, function(x) cor(mat1, mat2[1,]))[,1] [,2] [,3] [,4] [,5] [1,] -0.4626122 -0.4626122 -0.4626122 -0.4626122 -0.4626122 [2,] -0.9031543 -0.9031543 -0.9031543 -0.9031543 -0.9031543 [3,] 0.0735273 0.0735273 0.0735273 0.0735273 0.0735273 [4,] 0.7401259 0.7401259 0.7401259 0.7401259 0.7401259 [5,] -0.4548582 -0.4548582 -0.4548582 -0.4548582 -0.4548582 Scenario 2:> apply(mat1, 1, function(x) cor(mat1, mat2))[,1] [,2] [,3] [,4] [,5] [1,] 0.19394126 0.19394126 0.19394126 0.19394126 0.19394126 [2,] 0.26402400 0.26402400 0.26402400 0.26402400 0.26402400 [3,] 0.12923842 0.12923842 0.12923842 0.12923842 0.12923842 [4,] -0.74549676 -0.74549676 -0.74549676 -0.74549676 -0.74549676 [5,] 0.64074122 0.64074122 0.64074122 0.64074122 0.64074122 [6,] 0.26931986 0.26931986 0.26931986 0.26931986 0.26931986 [7,] 0.08527921 0.08527921 0.08527921 0.08527921 0.08527921 [8,] -0.28034079 -0.28034079 -0.28034079 -0.28034079 -0.28034079 [9,] -0.15251915 -0.15251915 -0.15251915 -0.15251915 -0.15251915 [10,] 0.19542415 0.19542415 0.19542415 0.19542415 0.19542415 [11,] 0.75107032 0.75107032 0.75107032 0.75107032 0.75107032 [12,] 0.53042767 0.53042767 0.53042767 0.53042767 0.53042767 [13,] -0.51163612 -0.51163612 -0.51163612 -0.51163612 -0.51163612 [14,] -0.44396048 -0.44396048 -0.44396048 -0.44396048 -0.44396048 [15,] 0.57018745 0.57018745 0.57018745 0.57018745 0.57018745 [16,] 0.70480284 0.70480284 0.70480284 0.70480284 0.70480284 [17,] -0.36674283 -0.36674283 -0.36674283 -0.36674283 -0.36674283 [18,] -0.81826607 -0.81826607 -0.81826607 -0.81826607 -0.81826607 [19,] 0.53145184 0.53145184 0.53145184 0.53145184 0.53145184 [20,] 0.24568385 0.24568385 0.24568385 0.24568385 0.24568385 [21,] -0.10610402 -0.10610402 -0.10610402 -0.10610402 -0.10610402 [22,] -0.78650748 -0.78650748 -0.78650748 -0.78650748 -0.78650748 [23,] 0.04269423 0.04269423 0.04269423 0.04269423 0.04269423 [24,] 0.14704698 0.14704698 0.14704698 0.14704698 0.14704698 [25,] 0.28340166 0.28340166 0.28340166 0.28340166 0.28340166 ********************************************************************** Please be aware that, notwithstanding the fact that the pers...{{dropped}}