Does anybody have any insight into how to make this faster? I suspect, that the rounding going on may be an issue, as is the stepping through data frame rows using integers ... If you have the patience to teach a noob, he will highly appreciate it ;0) Joh digit <- 4 for (minute in seq(from=25,to=lrange[2])){ # Extract all data associtaed with the current time (minute) frame <- subset(mylist,mylist[["Time"]] == minute) # Sort by Intensity frame <- frame[order(frame[["Intensity"]],decreasing = TRUE),] # Establish output frame using the most intense candidate newframe <- frame[1,] # Establish overlap-checking vector using the most intense candidate lowppm <- round(newframe[1,][["Mass"]]-newframe[1, [["Mass"]]/1E6*ppmrange,digits=digit) highppm <- round(newframe[1,][["Mass"]]+newframe[1, [["Mass"]]/1E6*ppmrange,digits=digit) presence <- seq(from=lowppm,to=highppm,by=10^(-digit)) # Walk through the entire original frame and check whether peaks are overlap-free ... do so until max of 2000 entries for (int in seq(from=2,to=nrow(frame))) { if(nrow(newframe) < 2000) { lowppm <- round(frame[int,][["Mass"]]-frame[int, [["Mass"]]/1E6*ppmrange,digits=digit) highppm <- round(frame[int,][["Mass"]]+frame[int, [["Mass"]]/1E6*ppmrange,digits=digit) windowrange <- seq(from=lowppm,to=highppm,by=10^(-digit)) if (sum(round(windowrange,digits=digit) %in% round(presence,digits=digit)) < 1) { newframe <- rbind(newframe,frame[int,]) presence <- c(presence,windowrange) } } else { break() } }
At 12:32 17/07/2007, Johannes Graumann wrote:>Does anybody have any insight into how to make this faster?I am not an expert on R programming by any means but I notice you are growing your new data frame row by row. I believe it is normally recommended to allocate enough space to start with.>I suspect, that the rounding going on may be an issue, as is the stepping >through data frame rows using integers ... > >If you have the patience to teach a noob, he will highly appreciate it ;0) > >Joh > >digit <- 4 >for (minute in seq(from=25,to=lrange[2])){ > # Extract all data associtaed with the current time (minute) > frame <- subset(mylist,mylist[["Time"]] == minute) > # Sort by Intensity > frame <- frame[order(frame[["Intensity"]],decreasing = TRUE),] > # Establish output frame using the most intense candidate > newframe <- frame[1,] > # Establish overlap-checking vector using the most intense candidate > lowppm <- round(newframe[1,][["Mass"]]-newframe[1, >[["Mass"]]/1E6*ppmrange,digits=digit) > highppm <- round(newframe[1,][["Mass"]]+newframe[1, >[["Mass"]]/1E6*ppmrange,digits=digit) > presence <- seq(from=lowppm,to=highppm,by=10^(-digit)) > # Walk through the entire original frame and check whether peaks are >overlap-free ... do so until max of 2000 entries > for (int in seq(from=2,to=nrow(frame))) { > if(nrow(newframe) < 2000) { > lowppm <- round(frame[int,][["Mass"]]-frame[int, >[["Mass"]]/1E6*ppmrange,digits=digit) > highppm <- round(frame[int,][["Mass"]]+frame[int, >[["Mass"]]/1E6*ppmrange,digits=digit) > windowrange <- seq(from=lowppm,to=highppm,by=10^(-digit)) > if (sum(round(windowrange,digits=digit) %in% >round(presence,digits=digit)) < 1) { > newframe <- rbind(newframe,frame[int,]) > presence <- c(presence,windowrange) > } > } else { > break() > } > }Michael Dewey http://www.aghmed.fsnet.co.uk
Hi If I'm right you are trying to find peaks with about the same mass as the maximum intensity. Why not make the difference between the maximum mass and the list of masses subsetted by intensity. then subset the difference with a thresholded value. If I'm not understanding your question clear, please let me know what you are trying to do. I've written some scripts for MS spectra analyses, if you're interested, I'll try to find them. Good luck Bart Johannes Graumann-2 wrote:> > Does anybody have any insight into how to make this faster? > I suspect, that the rounding going on may be an issue, as is the stepping > through data frame rows using integers ... > > If you have the patience to teach a noob, he will highly appreciate it ;0) > > Joh > > digit <- 4 > for (minute in seq(from=25,to=lrange[2])){ > # Extract all data associtaed with the current time (minute) > frame <- subset(mylist,mylist[["Time"]] == minute) > # Sort by Intensity > frame <- frame[order(frame[["Intensity"]],decreasing = TRUE),] > # Establish output frame using the most intense candidate > newframe <- frame[1,] > # Establish overlap-checking vector using the most intense candidate > lowppm <- round(newframe[1,][["Mass"]]-newframe[1, > [["Mass"]]/1E6*ppmrange,digits=digit) > highppm <- round(newframe[1,][["Mass"]]+newframe[1, > [["Mass"]]/1E6*ppmrange,digits=digit) > presence <- seq(from=lowppm,to=highppm,by=10^(-digit)) > # Walk through the entire original frame and check whether peaks are > overlap-free ... do so until max of 2000 entries > for (int in seq(from=2,to=nrow(frame))) { > if(nrow(newframe) < 2000) { > lowppm <- round(frame[int,][["Mass"]]-frame[int, > [["Mass"]]/1E6*ppmrange,digits=digit) > highppm <- round(frame[int,][["Mass"]]+frame[int, > [["Mass"]]/1E6*ppmrange,digits=digit) > windowrange <- seq(from=lowppm,to=highppm,by=10^(-digit)) > if (sum(round(windowrange,digits=digit) %in% > round(presence,digits=digit)) < 1) { > newframe <- rbind(newframe,frame[int,]) > presence <- c(presence,windowrange) > } > } else { > break() > } > } > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >-- View this message in context: http://www.nabble.com/SLLOOOWWW-function-...-tf4096328.html#a11695601 Sent from the R help mailing list archive at Nabble.com.
Maybe Matching Threads
- as.formula and lme ( Fixed effects: Error in as.vector(x, "list") : cannot coerce to vector)
- as.formula and lme ( Fixed effects: Error in as.vector(x, "list") : cannot coerce to vector)
- lm with predictor matrix
- implicit data frame reference
- strange PREDICTIONS from a PIECEWISE LINEAR (mixed) MODEL