Hi, what would be a good way of enhancing the ancova function from the HH package when using a 2 factor ANCOVA? The current behaviour for the "ancova" function from package HH is: ---------------------------------------------- | P1 || P1 || P3 || P4 | | PS | <- the lattice strip ---------------------------------------------- | x|| x ||x ||x | | | | x ||x || x || x | |superimp.| <- the lattice plot |x || x || x || x | | | ---------------------------------------------- P1:P4 : Show an xy-plot for each factor level of the covariate P. PS: Displays the previous plots superimposed superimp: P1:P4 superimposed I would like to use this function for a two factor design. ------------------------------------------------- | Q1 || Q1 || Q1 || Q1 | | PS.Pi | <- strip1 ------------------------------------------------- | P1 || P1 || P3 || P4 | | PS.Pi | <- strip2 ------------------------------------------------- |x || x || x || x | | | |x || x || x || x | | | <- plot |x || x || x || x | | | ------------------------------------------------- ------------------------------------------------- | Q2 || Q2 || Q2 || Q2 | | PS.Pi | <- strip1 ------------------------------------------------- | P1 || P1 || P3 || P4 | | PS.Pi | <- strip2 ------------------------------------------------- |x || x || x || x | | | |x || x || x || x | | | <- plot |x || x || x || x | | | ------------------------------------------------- [...] ------------------------------------------------- | Q5 || Q5 || Q5 || Q5 | | PS.Pi | <- strip1 ------------------------------------------------- | P1 || P1 || P3 || P4 | | PS.Pi | <- strip2 ------------------------------------------------- |x || x || x || x | | | |x || x || x || x | | | <- plot |x || x || x || x | | | ------------------------------------------------- Here is an example: --8<---------------cut here---------------start------------->8--- rm(list = ls(all = TRUE)) rm(list = c(ls())) library(lattice) library(HH) ## 1. generate data random <- rnorm(200) y <- abs(random) x1.cont <- abs(random) x2.fac <- as.factor(rep(1:5, 4)) # 4 groups x3.fac <- as.factor(rep(1:4, each=5))# 5 groups A <- data.frame(y, x1.cont, x2.fac, x2.fac) ## 2. plot trellis plot: foo <- xyplot(log(y) ~ log(x1.cont) | x2.fac * x3.fac, data = A, type = c("p","r"), strip = strip.custom(strip.names=TRUE), as.table=TRUE) plot(foo) ## 3. plot "ancova" plot using HH: ## normal usage: ancova(y ~ x1.cont * x2.fac) ## 4. Trying to combine "ancova" with trellis: ## does not work: ancova(y ~ x1.cont * x2.fac * x3.fac) --8<---------------cut here---------------end--------------->8--- -- Patrick Drechsler Department of Zoology University of Cambridge Downing Street Cambridge CB2 3EJ, UK