Dear R members, I am new in using frailty models in survival analyses and am getting some contrasting results when I compare the Wald and likelihood ratio tests provided by the r output. I am testing the survivorship of different sunflower interspecific crosses using cytoplasm (Cyt), Pollen and the interaction Cyt*Pollen as fixed effects, and sub-block as a random effect. I stratified the analysis by developmental stage (G_stageSM) as an ordered factor (two classes). There is a lot of tied deaths in this dataset. Below is the analysis summary. coxph(formula = Surv(Death_day, Censor) ~ Pollen * Cyt + strata (G_stageSM) + frailty(Sub.block), data = SurvNMexpSM) n=1422 (1 observation deleted due to missingness) coef se(coef) se2 Chisq DF p PollenHNA -0.0966 0.177 0.177 0.30 1.0 5.9e-01 PollenHNP -0.3160 0.122 0.122 6.65 1.0 9.9e-03 PollenPET -0.0478 0.120 0.120 0.16 1.0 6.9e-01 CytXA -0.2967 0.118 0.118 6.36 1.0 1.2e-02 frailty(Sub.block) 507.64 38.4 0.0e+00 PollenHNA:CytXA 0.2732 0.205 0.205 1.77 1.0 1.8e-01 PollenHNP:CytXA 0.7020 0.169 0.169 17.27 1.0 3.3e-05 PollenPET:CytXA 0.0837 0.207 0.207 0.16 1.0 6.9e-01 exp(coef) exp(-coef) lower .95 upper .95 PollenHNA 0.908 1.101 0.641 1.285 PollenHNP 0.729 1.372 0.573 0.927 PollenPET 0.953 1.049 0.753 1.206 CytXA 0.743 1.345 0.590 0.936 PollenHNA:CytXA 1.314 0.761 0.879 1.966 PollenHNP:CytXA 2.018 0.496 1.449 2.810 PollenPET:CytXA 1.087 0.920 0.724 1.632 Iterations: 10 outer, 25 Newton-Raphson Variance of random effect= 0.81 I-likelihood = -6513.5 Degrees of freedom for terms= 3.0 1.0 38.4 3.0 Rsquare= 0.365 (max possible= 1 ) Likelihood ratio test= 647 on 45.4 df, p=0 Wald test = 20.6 on 45.4 df, p=1 Although, the results seem to reflect what we observe, it called my attention that the Likelihood ratio test and Wald test p-values are exactly the opposite. I performed the same analysis without frailty and obtained Call: coxph(formula = Surv(Death_day, Censor) ~ Pollen * Cyt + strata (G_stageSM), data = SurvNMexpSM) n=1422 (1 observation deleted due to missingness) coef exp(coef) se(coef) z p PollenHNA -0.0193 0.981 0.170 -0.1139 0.9100 PollenHNP -0.2582 0.772 0.119 -2.1642 0.0300 PollenPET -0.0555 0.946 0.117 -0.4747 0.6400 CytXA -0.2123 0.809 0.114 -1.8702 0.0610 PollenHNA:CytXA -0.0135 0.987 0.197 -0.0684 0.9500 PollenHNP:CytXA 0.4358 1.546 0.164 2.6600 0.0078 PollenPET:CytXA 0.0186 1.019 0.202 0.0924 0.9300 exp(coef) exp(-coef) lower .95 upper .95 PollenHNA 0.981 1.020 0.703 1.368 PollenHNP 0.772 1.295 0.611 0.976 PollenPET 0.946 1.057 0.752 1.190 CytXA 0.809 1.237 0.647 1.010 PollenHNA:CytXA 0.987 1.014 0.670 1.452 PollenHNP:CytXA 1.546 0.647 1.122 2.132 PollenPET:CytXA 1.019 0.982 0.686 1.513 Rsquare= 0.008 (max possible= 1 ) Likelihood ratio test= 11.3 on 7 df, p=0.127 Wald test = 11.3 on 7 df, p=0.124 Score (logrank) test = 11.4 on 7 df, p=0.123 Here, the wald and the Likelihood ratio tests seem to be telling the same thing Does anyone have a clue on how to interpret these results? Thanks J Berg