Hello, Excuse me for a more methodological than technical question. I'm developing a Cox model with 10 covariates. One of them is age (named "eta"). I've checked proportionality with cox.zph with age continuous: > cox.zph(coxph(Surv(TTP,CENSOTTP)~eta)) rho chisq p eta -0.0154 0.0225 0.88 and categorical (eta<60): > cox.zph(coxph(Surv(TTP,CENSOTTP)~eta<60)) rho chisq p eta < 60TRUE 0.0168 0.0255 0.873 it seems ok but when I check graphical pattern of log-minus-log Kaplan Meier I see a convergent-divergent pattern, which seems violating proportionality: > plot(survfit(Surv(TTP,CENSOTTP)~eta<60),fun="cloglog",xlab="log TTP",ylab="log(-log(S))") also plotting cox.zph of eta<60 (log time) shows a sinusoidal pattern. I' m not experienced with plotting cox.zph or log-minus-log Kaplan Meier, so my question is: should I always rely on significance test from cox.zph or should I look at graphical pattern? Is age in this example violating proportionality? I paste below "eta" (age) "TTP" (time to event) "CENSOTTP" (censor) Thank you Pietro Bulian Clinical and Experimental Hematology Research Unit Centro di Riferimento Oncologico, I.R.C.C.S. Via Pedemontana, 12 I-33081 Aviano (PN) - Italy phone: +39 0434 659 412 fax: +39 0434 659 409 e-mail: pbulian@cro.it "eta" "TTP" "CENSOTTP" 71 68 0 52 29 0 49 5 1 69 136 0 79 11 0 61 1 1 56 3 1 71 52 1 61 40 1 70 51 1 58 30 0 78 52 0 65 40 0 65 44 1 55 60 1 68 84 1 70 48 1 73 34 1 49 8 0 44 52 1 65 25 0 56 86 1 57 116 0 52 25 0 66 76 0 67 64 0 67 87 0 58 23 0 59 15 1 51 89 0 55 65 1 62 45 1 65 73 0 62 38 0 87 11 0 65 16 1 62 20 0 64 39 1 73 27 1 58 34 0 70 22 1 41 5 0 54 52 0 37 15 1 72 4 1 51 14 1 68 19 1 68 7 0 59 24 1 67 32 1 68 54 0 74 22 0 68 5 1 83 16 1 66 186 0 58 16 1 44 87 1 67 54 1 71 48 0 61 25 1 58 29 0 58 41 0 63 63 1 61 12 1 69 45 1 49 56 1 56 12 1 69 113 0 81 39 0 68 50 0 46 50 0 63 54 0 64 34 1 66 98 0 45 32 0 74 76 0 66 53 0 83 11 0 42 19 0 72 130 0 60 23 0 55 20 0 57 138 0 77 46 0 59 46 1 58 4 1 80 76 0 73 58 0 59 17 1 47 95 0 54 14 1 66 7 1 66 28 1 64 76 0 77 25 1 77 27 1 45 22 0 78 124 0 67 40 0 52 32 1 75 52 0 55 70 0 37 13 0 62 40 0 44 125 0 64 6 0 56 16 1 50 16 0 67 79 0 70 37 0 62 168 0 71 9 0 71 91 0 45 62 0 67 8 0 59 43 0 66 89 0 52 1 1 55 48 0 65 6 1 53 23 0 65 41 1 59 61 0 65 126 0 67 158 0 62 152 0 44 56 1 54 89 1 63 14 0 61 101 0 60 88 0 65 101 0 68 39 0 74 27 1 61 25 0 65 36 0 78 37 0 67 34 0 52 89 0 51 70 1 48 132 1 57 15 1 76 116 0 53 141 0 54 136 1 69 10 1 65 33 0 66 96 0 72 128 0 39 14 1 78 52 0 84 99 0 58 73 0 73 24 1 60 201 0 59 116 1 68 85 0 63 152 0 68 4 1 72 24 0 70 22 0 60 12 1 62 25 1 62 82 0 66 28 0 62 9 0 61 27 1 62 90 1 56 85 0 48 14 1 64 56 0 60 19 0 68 77 1 59 80 1 73 47 0 66 169 0 66 43 0 63 56 0 55 150 0 57 125 1 61 161 0 56 24 1 63 36 0 61 28 0 74 12 1 67 71 1 70 28 1 78 69 0 65 23 0 58 24 1 70 39 0 71 12 0 58 22 0 78 46 0 63 46 1 55 20 1 53 78 0 81 49 0 66 16 0 70 100 0 64 31 0 72 18 0 62 84 1 60 24 1 61 19 0 68 67 0 52 24 1 77 70 0 74 91 0 67 33 1 80 36 1 69 107 0 60 96 1 61 102 0 59 52 0 50 14 0 71 60 1 72 52 0 59 72 0 80 64 1 55 48 0 70 60 1 76 56 0 41 16 1 55 24 1 68 49 1 69 148 0 59 54 1 74 153 0 58 186 0 70 40 0 71 42 1 [[alternative HTML version deleted]]