Serguei Kaniovski
2006-Dec-01 11:25 UTC
[R] A different contingency table of counts by case
Dear All, the following code, by courtesy of Jacques VESLOT, collates the following contingency table from DATA (read in as "df", sample listed below) "led" represents (court) cases, "jid" the (justices) persons, and "vote" is the binary state. The command: smat<-t(apply(combinations(nlevels(df$jid), 2), 1, function(x) with(df[df$jid %in% levels(df$jid)[x],], table(factor(unlist(sapply(split(vote, led), function(y) ifelse(length(y) == 2, paste(y, collapse=""), NA))), levels=c("00","01","10","11")))))) collates a contingency table of number of cases any two persons a. both have "1", b. the first has "0" - the second has "1", c. the first has "1" - the second has "0", d. both have "0". QUESTION: I would like to collate a table counting all possible combinations of binary states, ie voting outcomes. Each "led" contains 9 "jid", so there will be 2^9=512 different possibilities. These are, in the order of the decimals the vectors represent, (1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,0) (1,1,1,1,1,1,1,0,1) etc. until (0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,0) What I need to know is how often each of the 512 outcomes occurs. Thanks, Serguei DATA: jid,led,vote breyer;143/0154;0 ginsberg;143/0154;0 kennedy;143/0154;1 oconnor;143/0154;0 rehnquist;143/0154;0 scalia;143/0154;0 souter;143/0154;0 stevens;143/0154;0 thomas;143/0154;1 breyer;143/0171;1 ginsberg;143/0171;1 kennedy;143/0171;1 oconnor;143/0171;0 rehnquist;143/0171;0 scalia;143/0171;0 souter;143/0171;1 stevens;143/0171;1 thomas;143/0171;0 breyer;143/0238;1 ginsberg;143/0238;1 kennedy;143/0238;1 oconnor;143/0238;1 rehnquist;143/0238;1 scalia;143/0238;1 souter;143/0238;1 stevens;143/0238;1 thomas;143/0238;1 breyer;143/0258;1 ginsberg;143/0258;1 kennedy;143/0258;1 oconnor;143/0258;1 rehnquist;143/0258;1 scalia;143/0258;1 souter;143/0258;1 stevens;143/0258;1 thomas;143/0258;1 breyer;143/0270;0 ginsberg;143/0270;0 kennedy;143/0270;1 oconnor;143/0270;0 rehnquist;143/0270;1 scalia;143/0270;1 souter;143/0270;0 stevens;143/0270;0 thomas;143/0270;1 breyer;143/0311;0 ginsberg;143/0311;1 kennedy;143/0311;0 oconnor;143/0311;0 rehnquist;143/0311;0 scalia;143/0311;1 souter;143/0311;1 stevens;143/0311;1 thomas;143/0311;1 breyer;143/0388;1 ginsberg;143/0388;1 kennedy;143/0388;1 oconnor;143/0388;1 rehnquist;143/0388;1 scalia;143/0388;0 souter;143/0388;1 stevens;143/0388;0 thomas;143/0388;1 breyer;143/0399;1 ginsberg;143/0399;1 kennedy;143/0399;1 oconnor;143/0399;1 rehnquist;143/0399;1 scalia;143/0399;1 souter;143/0399;1 stevens;143/0399;1 thomas;143/0399;1 breyer;143/0408;1 ginsberg;143/0408;0 kennedy;143/0408;1 oconnor;143/0408;1 rehnquist;143/0408;1 scalia;143/0408;1 souter;143/0408;0 stevens;143/0408;0 thomas;143/0408;1