Minyu Chen
2006-Oct-27 16:54 UTC
[R] Marginal Effect larger than 1 for a binary variable (summary.Design after lrm)
Dear All: I run a logistic regression (using lrm in the Design package), and after that, I use the command "summary" to get the marginal effects of each variable. But one strange thing happens on my binary dependent variable: The marginal effect of it jumping from 0 to 1 is 1.77. I believe the marginal effect of binary variable x1 has interpretation should be P(Y=1|x1=1, x2...)-P(Y=1|x1=0,x2...). As both terms lies in [0,1], their difference shouldn't be larger than 1. Besides this, I also get some boundary number for the marginal effect of the same binary variable (in datasets of other years)like .98, . 97, with which I am not comfortable either. I suspect I did something wrong. This is part of my model: > resultt1 Logistic Regression Model lrm(formula = typemort ~ adv_binc_ratio + agem1 + regEA + regEM + regGL + regN + regNI + regNW + regS + regSW + regW + regWM + regY + repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning + adv_binc_ratio * (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning) + agem1 * (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning), data = a) This is part of my result: > summary(resultt1,adv_binc_ratio=mean(a$adv_binc_ratio),agem1=mean(a $agem1),repmethIO=c(0,mean(a$repmethIO),1),repmethSR=c(0,mean(a $repmethSR),1),no_dis_no_def=c(0,mean(a$no_dis_no_def),1),prevLO=c (0,mean(a$prevLO),1),prevOO=c(0,mean(a$prevOO),1),prevRP=c(0,mean(a $prevRP),1),regEA=c(0,mean(a$regEA),1),regEM=mean(a$regEM),regGL=mean (a$regGL),regN=mean(a$regN),regNI=mean(a$regNI),regNW=mean(a $regNW),regS=mean(a$regS),regSW=mean(a$regSW),regW=mean(a $regW),regWM=mean(a$regWM),regY=mean(a$regY),owning=c(0,mean(a $owning),1)) Effects Response : typemort Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95 no_dis_no_def 0.0000 1.0000 1.0000 1.76 0.03 1.69 1.82 Odds Ratio 0.0000 1.0000 1.0000 5.79 NA 5.41 6.19 Adjusted to: adv_binc_ratio=2.611027 agem1=40.47638 repmethIO=0.1456293 repmethSR=0.6711471 no_dis_no_def=0.4463533 prevLO=0.06590113 prevOO=0.7785591 prevRP=0.06738472 owning=0.4765593 Thank you very much for your help. Thanks, Minyu Chen
Minyu Chen
2006-Oct-27 16:57 UTC
[R] Marginal Effect larger than 1 for a binary variable (summary.Design after lrm)
On Oct 27, 2006, at 5:54 PM, Minyu Chen wrote:> Dear All: > > I run a logistic regression (using lrm in the Design package), and > after that, I use the command "summary" to get the marginal effects > of each variable. But one strange thing happens on my binary > dependent variable: The marginal effect of it jumping from 0 to 1 > is 1.77. I believe the marginal effect of binary variable x1 has > interpretation should be P(Y=1|x1=1, x2...)-P(Y=1|x1=0,x2...). As > both terms lies in [0,1], their difference shouldn't be larger than 1. > > Besides this, I also get some boundary number for the marginal > effect of the same binary variable (in datasets of other years) > like .98, .97, with which I am not comfortable either. I suspect I > did something wrong. > > This is part of my model: > > > resultt1 > > Logistic Regression Model > > lrm(formula = typemort ~ adv_binc_ratio + agem1 + regEA + regEM + > regGL + regN + regNI + regNW + regS + regSW + regW + regWM + > regY + repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + > prevRP + owning + adv_binc_ratio * (repmethIO + repmethSR + > no_dis_no_def + prevLO + prevOO + prevRP + owning) + agem1 * > (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + > prevRP + owning), data = a) > > > This is part of my result: > > > summary(resultt1,adv_binc_ratio=mean(a$adv_binc_ratio),agem1=mean > (a$agem1),repmethIO=c(0,mean(a$repmethIO),1),repmethSR=c(0,mean(a > $repmethSR),1),no_dis_no_def=c(0,mean(a$no_dis_no_def),1),prevLO=c > (0,mean(a$prevLO),1),prevOO=c(0,mean(a$prevOO),1),prevRP=c(0,mean(a > $prevRP),1),regEA=c(0,mean(a$regEA),1),regEM=mean(a > $regEM),regGL=mean(a$regGL),regN=mean(a$regN),regNI=mean(a > $regNI),regNW=mean(a$regNW),regS=mean(a$regS),regSW=mean(a > $regSW),regW=mean(a$regW),regWM=mean(a$regWM),regY=mean(a > $regY),owning=c(0,mean(a$owning),1)) > Effects Response : typemort > > Factor Low High Diff. Effect S.E. Lower 0.95 Upper > 0.95 > no_dis_no_def 0.0000 1.0000 1.0000 1.76 0.03 1.69 1.82 > Odds Ratio 0.0000 1.0000 1.0000 5.79 NA 5.41 6.19 > > Adjusted to: adv_binc_ratio=2.611027 agem1=40.47638 > repmethIO=0.1456293 repmethSR=0.6711471 no_dis_no_def=0.4463533 > prevLO=0.06590113 prevOO=0.7785591 prevRP=0.06738472 owning=0.4765593 > > Thank you very much for your help. > > Thanks, > Minyu Chen >
Minyu Chen
2006-Oct-27 17:00 UTC
[R] Marginal Effect larger than 1 for a binary variable (summary.Design after lrm)
Dear All: Sorry if I duplicated the mail, as I just registered and not knowing whether the former mail went through. I run a logistic regression (using lrm in the Design package), and after that, I use the command "summary" to get the marginal effects of each variable. But one strange thing happens on my binary dependent variable: The marginal effect of it jumping from 0 to 1 is 1.77. I believe the marginal effect of binary variable x1 has interpretation should be P(Y=1|x1=1, x2...)-P(Y=1|x1=0,x2...). As both terms lies in [0,1], their difference shouldn't be larger than 1. Besides this, I also get some boundary number for the marginal effect of the same binary variable (in datasets of other years)like .98, . 97, with which I am not comfortable either. I suspect I did something wrong. This is part of my model: > resultt1 Logistic Regression Model lrm(formula = typemort ~ adv_binc_ratio + agem1 + regEA + regEM + regGL + regN + regNI + regNW + regS + regSW + regW + regWM + regY + repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning + adv_binc_ratio * (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning) + agem1 * (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + prevRP + owning), data = a) This is part of my result: > summary(resultt1,adv_binc_ratio=mean(a$adv_binc_ratio),agem1=mean(a $agem1),repmethIO=c(0,mean(a$repmethIO),1),repmethSR=c(0,mean(a $repmethSR),1),no_dis_no_def=c(0,mean(a$no_dis_no_def),1),prevLO=c (0,mean(a$prevLO),1),prevOO=c(0,mean(a$prevOO),1),prevRP=c(0,mean(a $prevRP),1),regEA=c(0,mean(a$regEA),1),regEM=mean(a$regEM),regGL=mean (a$regGL),regN=mean(a$regN),regNI=mean(a$regNI),regNW=mean(a $regNW),regS=mean(a$regS),regSW=mean(a$regSW),regW=mean(a $regW),regWM=mean(a$regWM),regY=mean(a$regY),owning=c(0,mean(a $owning),1)) Effects Response : typemort Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95 no_dis_no_def 0.0000 1.0000 1.0000 1.76 0.03 1.69 1.82 Odds Ratio 0.0000 1.0000 1.0000 5.79 NA 5.41 6.19 Adjusted to: adv_binc_ratio=2.611027 agem1=40.47638 repmethIO=0.1456293 repmethSR=0.6711471 no_dis_no_def=0.4463533 prevLO=0.06590113 prevOO=0.7785591 prevRP=0.06738472 owning=0.4765593 Thank you very much for your help. Thanks, Minyu Chen
Frank E Harrell Jr
2006-Oct-27 17:07 UTC
[R] Marginal Effect larger than 1 for a binary variable (summary.Design after lrm)
Minyu Chen wrote:> Dear All: > > I run a logistic regression (using lrm in the Design package), and > after that, I use the command "summary" to get the marginal effects > of each variable. But one strange thing happens on my binary > dependent variable: The marginal effect of it jumping from 0 to 1 is > 1.77. I believe the marginal effect of binary variable x1 has > interpretation should be P(Y=1|x1=1, x2...)-P(Y=1|x1=0,x2...). As > both terms lies in [0,1], their difference shouldn't be larger than 1.No, please read more of the documentation. Effects are on the log odds scale; that's why you also get the anti-log of that, the odds ratio. Frank> > Besides this, I also get some boundary number for the marginal effect > of the same binary variable (in datasets of other years)like .98, . > 97, with which I am not comfortable either. I suspect I did something > wrong. > > This is part of my model: > > > resultt1 > > Logistic Regression Model > > lrm(formula = typemort ~ adv_binc_ratio + agem1 + regEA + regEM + > regGL + regN + regNI + regNW + regS + regSW + regW + regWM + > regY + repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + > prevRP + owning + adv_binc_ratio * (repmethIO + repmethSR + > no_dis_no_def + prevLO + prevOO + prevRP + owning) + agem1 * > (repmethIO + repmethSR + no_dis_no_def + prevLO + prevOO + > prevRP + owning), data = a) > > > This is part of my result: > > > summary(resultt1,adv_binc_ratio=mean(a$adv_binc_ratio),agem1=mean(a > $agem1),repmethIO=c(0,mean(a$repmethIO),1),repmethSR=c(0,mean(a > $repmethSR),1),no_dis_no_def=c(0,mean(a$no_dis_no_def),1),prevLO=c > (0,mean(a$prevLO),1),prevOO=c(0,mean(a$prevOO),1),prevRP=c(0,mean(a > $prevRP),1),regEA=c(0,mean(a$regEA),1),regEM=mean(a$regEM),regGL=mean > (a$regGL),regN=mean(a$regN),regNI=mean(a$regNI),regNW=mean(a > $regNW),regS=mean(a$regS),regSW=mean(a$regSW),regW=mean(a > $regW),regWM=mean(a$regWM),regY=mean(a$regY),owning=c(0,mean(a > $owning),1)) > Effects Response : typemort > > Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95 > no_dis_no_def 0.0000 1.0000 1.0000 1.76 0.03 1.69 1.82 > Odds Ratio 0.0000 1.0000 1.0000 5.79 NA 5.41 6.19 > > Adjusted to: adv_binc_ratio=2.611027 agem1=40.47638 > repmethIO=0.1456293 repmethSR=0.6711471 no_dis_no_def=0.4463533 > prevLO=0.06590113 prevOO=0.7785591 prevRP=0.06738472 owning=0.4765593 > > Thank you very much for your help. > > Thanks, > Minyu Chen > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.