Hello all, Here is the code that I am using for finding differentially expressed genes. #Normalization library(affy) library(Biobase) library(limma) library(gcrma) pd<-read.phenoData("file.txt",header=TRUE,row.names=1,as.is=TRUE,sep="\t") Data <- ReadAffy(filenames=pData(pd)$FileName,phenoData=pd) print(Data) eset <- gcrma(Data) write.exprs(eset, file="decide-test.6-6-06.txt") #Linear Model pData(eset) targets<-pData(eset) model.matrix(~ -1 +factor(targets$Target,levels=unique(targets$Target))) design <- model.matrix(~ -1 + factor(targets$Target,levels=unique(targets$Target))) unique(targets$Target) colnames(design) <- unique(targets$Target) ncol(design) numParameters <- ncol(design) colnames(design) parameterNames <- colnames(design) design fit <- lmFit(eset,design=design) names(fit) contrastNames <-c(paste(parameterNames[2],parameterNames[1],sep="-"), paste(parameterNames[3],parameterNames[1],sep="-"), paste(parameterNames[4],parameterNames[1],sep="-"), paste(parameterNames[5],parameterNames[1],sep="-"), paste(parameterNames[6],parameterNames[1],sep="-"), paste(parameterNames[7],parameterNames[1],sep="-")) contrastsMatrix <- matrix(c( -1,1,0,0,0,0,0, -1,0,1,0,0,0,0, -1,0,0,1,0,0,0, -1,0,0,0,1,0,0, -1,0,0,0,0,1,0, -1,0,0,0,0,0,1),nrow=ncol(design)) rownames(contrastsMatrix) <- parameterNames colnames(contrastsMatrix) <- contrastNames contrastsMatrix fit2 <- contrasts.fit(fit,contrasts=contrastsMatrix) names(fit2) #ebayes fit2 <- eBayes(fit2) names(fit2) numGenes <- nrow(eset@exprs) #decideTest results <- decideTests(fit2,method="nestedF",p=0.05); write.fit(fit2, results, "data.txt", adjust="BH"); Is there any way for getting the adjusted p-values from the decideTests method ? Thanks, Vijay [[alternative HTML version deleted]]