Dear all, Does any one knows why should I get the following error message, when trying to do a simple data.frame?? DataF<-data.frame(Subject,BiomR,Spp,Capas,Litter,Herbs,LitterD,MaxCanH,DDifS p,DSSp,Slope, CanDens,NearestSp) Erro em data.frame(Subject, BiomR, Spp, Capas, Litter, Herbs, LitterD, : arguments imply differing number of rows: 202, 0 The data I am using is: Subject BiomR Spp Capas Litter Herbs LitterD MaxCanH DDifSp DSSp Slope CanDens NearestSp 1 140.74 Qfa 2 1.460 0 0.778 8 70 3.663 28 2.280 Ear 2 7.26 Aun 2 0.660 0 0.477 8 110 3.988 34 2.476 Ear 3 68.72 Qfa 2 1.019 0 1.000 8 48 2.300 48 2.476 Ear 4 0.13 Vti 2 1.719 0 0.903 4 55 4.141 28 3.258 Qco 5 2.32 Vti 2 1.719 0 0.954 4 65 3.984 32 3.051 Aun 6 2.97 Vti 2 1.719 0 0.954 6 201 3.642 22 2.000 Qfa 7 0.16 Qfa 2 1.238 2 0.778 6 72 3.105 20 1.566 Vti 8 1.76 Qfa 2 1.145 0 0.954 6 67 3.383 22 2.052 Vti 9 0.35 Qfa 3 1.092 2 0.778 6 65 3.557 30 2.106 Vti 10 0.15 Qfa 2 1.092 2 0.778 6 42 3.464 14 2.106 Vti 11 107.33 Qfa 3 1.145 5 0.903 8 147 4.035 24 2.220 Vti 12 12.32 Vti 3 1.145 5 1.000 6 208 3.464 28 2.220 Qfa 13 1.82 Vti 3 1.145 5 0.903 6 251 3.458 20 2.220 Qfa 14 1.84 Vti 1 1.019 5 0.602 6 88 3.960 28 1.363 Aun 15 3.25 Vti 2 1.719 0 0.778 6 70 4.319 14 2.621 Aun 16 3.60 Vti 1 1.460 0 0.954 6 53 4.186 26 1.902 Aun 17 0.69 Vti 2 1.238 5 0.845 4 184 3.856 44 2.547 Aun 18 1.04 Vti 1 1.019 5 0.602 4 144 3.911 32 2.052 Aun 19 0.08 Vti 2 1.460 0 0.699 6 93 3.956 36 2.547 Qco 20 10.43 Vti 2 1.145 5 0.903 6 70 3.919 23 3.258 Qco 21 0.69 Vti 3 1.145 5 0.845 8 120 4.023 30 3.051 Ear 22 13.47 Vti 3 1.460 2 0.811 8 39 3.370 42 3.152 Ear 23 2.83 Vti 2 1.019 5 0.845 6 120 4.102 24 3.258 Ear 24 1.26 Vti 2 1.019 5 0.903 6 153 4.116 30 3.152 Ear 25 0.25 Qfa 2 1.145 5 0.845 6 106 4.210 38 2.699 Qco 26 28.27 Vti 2 0.913 10 0.845 6 203 4.688 32 1.566 Qco 27 0.88 Vti 2 1.460 2 0.845 8 52 4.464 30 3.051 Qfa 28 0.08 Vti 2 1.311 0 0.477 8 86 4.486 48 2.956 Qfa 29 1.13 Vti 3 1.019 5 0.845 8 54 4.291 40 3.492 Qfa 30 11.03 Vti 2 0.821 0 0.903 4 130 4.606 42 2.699 Ear 31 0.63 Vti 2 0.821 5 0.845 4 130 4.464 44 2.699 Ear 32 0.97 Vti 2 0.737 0 0.845 4 123 4.562 34 2.699 Ear 33 4.94 Vti 2 0.737 0 0.903 4 123 4.522 48 2.699 Ear 34 2.26 Vti 2 0.821 5 0.778 4 114 4.478 46 2.699 Ear 35 0.94 Vti 2 0.660 0 0.903 4 144 4.516 31 2.699 Ear 36 0.69 Vti 2 0.589 0 0.699 4 146 4.551 35 2.699 Ear 37 0.13 Vti 3 1.019 0 0.845 8 48 4.362 14 2.343 Qfa 38 2.12 Vti 2 0.737 0 1.041 8 52 4.054 24 2.956 Qfa 39 1.77 Vti 2 0.913 0 0.903 8 56 5.198 6 2.621 Ear 40 0.32 Vti 2 1.145 5 0.954 8 118 5.138 35 3.258 Ear 41 0.11 Vti 2 1.019 0 0.602 8 84 5.237 20 2.621 Ear 42 1.57 Vti 1 0.913 0 0.954 6 137 5.038 12 3.492 Qco 43 1.77 Vti 3 0.737 0 0.954 6 141 5.026 16 3.371 Qco 44 0.17 Vti 2 0.913 0 1.000 8 69 4.901 24 3.258 Qco 45 0.41 Vti 3 1.092 2 0.954 8 81 5.129 44 4.457 Qfa 46 2.62 Vti 1 0.913 0 0.845 4 114 5.047 34 4.457 Ear 47 0.09 Vti 3 0.975 2 0.954 8 98 4.924 20 3.492 Aun 48 0.12 Vti 4 1.311 5 0.845 8 78 4.748 26 3.761 Aun 49 1.70 Vti 3 0.975 2 1.000 8 95 5.146 36 4.457 Qfa 50 14.49 Qfa 1 1.719 0 0.778 6 37 2.962 32 1.766 Pan 51 0.09 Vti 2 1.311 0 0.778 6 56 2.872 20 1.950 Pan 52 2.12 Qfa 2 1.460 0 0.845 6 203 3.097 18 3.152 Vti 53 0.23 Qfa 2 1.238 2 0.778 8 86 2.190 30 2.476 Ear 54 5.36 Qfa 2 0.975 0 0.954 6 134 3.409 42 4.684 Vti 55 0.41 Vti 2 1.145 5 0.845 6 108 3.890 36 4.945 Qco 56 0.19 Vti 1 1.719 0 0.845 6 42 4.130 35 3.492 Qco 57 15.59 Vti 3 1.719 0 1.114 6 91 4.386 16 4.257 Ear 58 3.25 Vti 3 1.719 0 0.903 6 85 4.275 36 4.257 Ear 59 2.32 Vti 3 1.460 0 0.954 6 91 4.223 32 4.257 Ear 60 4.24 Vti 3 1.719 0 1.041 6 36 4.386 42 4.257 Ear 61 31.49 Vti 3 1.719 0 1.176 6 78 4.371 43 4.257 Ear 62 2.97 Vti 3 0.786 2 0.954 6 71 3.988 22 4.076 Qco 63 0.50 Vti 3 0.706 2 0.903 6 76 4.134 20 4.076 Qco 64 20.20 Vti 2 1.719 0 1.079 6 62 3.557 18 5.640 Qfa 65 0.12 Vti 1 1.460 0 0.903 6 75 3.186 20 3.152 Qfa 66 0.10 Vti 1 1.719 0 0.903 6 90 3.154 20 3.152 Qfa 67 0.79 Vti 1 1.719 0 0.954 6 64 3.154 12 3.152 Ear 68 0.17 Vti 1 1.719 0 0.954 6 52 3.186 24 3.152 Ear 69 0.09 Qfa 1 0.589 0 0.477 4 55 3.540 32 3.492 Ear 70 1.02 Vti 2 1.719 0 0.845 6 107 3.816 38 3.911 Aun 71 12.67 Qfa 2 1.719 0 0.954 6 62 3.282 32 4.457 Aun 72 32.80 Qfa 2 1.719 0 0.699 6 56 2.962 32 4.076 Aun 73 26.64 Qfa 2 1.719 0 0.699 6 76 2.893 32 4.076 Aun 74 0.09 Vti 3 1.460 0 0.845 6 110 3.851 24 4.684 Aun 75 103.14 Qfa 2 1.719 0 0.845 6 124 3.703 28 4.257 Aun 76 0.09 Vti 2 1.719 0 0.845 6 156 3.637 26 4.257 Aun 77 248.11 Qfa 2 1.719 0 0.845 6 144 3.807 33 4.257 Aun 78 2.19 Vti 3 1.311 0 1.000 8 63 3.458 28 4.257 Aun 79 29.90 Vti 1 1.719 0 1.000 6 46 2.711 30 3.621 Qsu 80 17.81 Ral 2 1.460 0 1.000 8 55 4.516 10 4.945 Aun 81 0.11 Vti 2 1.311 0 0.954 6 84 4.189 10 5.640 Ear 82 0.53 Vti 2 1.719 0 0.845 6 23 4.389 24 4.945 Ear 83 10.30 Ral 3 1.460 0 0.903 8 42 4.843 20 5.640 Qco 84 41.56 Vti 2 1.460 0 0.778 6 74 4.008 40 5.254 Qfa 85 11.52 Qfa 2 1.719 0 0.845 8 77 3.611 34 5.640 Aun 86 113.61 Qfa 3 1.719 0 1.000 6 46 2.795 28 4.945 Ear 87 0.09 Vti 2 1.145 0 0.778 6 96 3.505 34 6.176 Qfa 88 7.63 Ral 3 1.719 0 0.845 6 45 3.344 38 5.254 Vti 89 0.09 Vti 2 0.913 0 0.602 6 66 3.980 22 4.945 Aun 90 98.52 Qfa 2 1.719 0 0.602 6 65 3.924 24 4.945 Aun 91 6.41 Qfa 1 0.291 60 0.845 6 121 3.500 30 3.152 Aun 92 0.47 Vti 1 1.019 5 0.602 6 107 4.380 22 3.152 Ear 93 0.14 Vti 1 1.145 5 0.699 6 56 4.288 28 4.457 Aun 94 1.98 Vti 1 1.145 5 0.602 6 75 4.325 28 4.457 Aun 95 6.41 Vti 1 0.460 50 0.778 6 60 4.559 20 4.257 Ear 96 3.53 Vti 1 0.523 45 0.778 6 127 4.559 22 4.257 Ear 97 0.57 Vti 1 0.523 40 0.699 6 90 4.500 30 4.257 Ear 98 2.76 Vti 1 0.345 60 0.602 6 116 4.598 22 4.257 Ear 99 1.70 Vti 1 0.240 70 0.954 6 76 4.644 36 3.258 Ear 100 0.91 Vti 1 0.240 70 0.954 6 81 4.724 35 3.258 Ear 101 18.65 Vti 1 0.523 45 0.903 6 57 4.780 30 3.258 Qco 102 0.16 Vti 1 1.719 0 0.845 4 79 4.845 40 5.640 Aun 103 0.09 Vti 2 1.719 0 0.602 6 103 4.538 30 4.076 Ear 104 1.63 Vti 1 1.719 0 0.778 6 84 4.540 36 4.257 Ear 105 15.51 Vti 1 1.460 2 0.602 6 102 4.601 30 4.257 Ear 106 2.26 Vti 2 1.719 0 0.699 6 72 4.593 38 4.257 Ear 107 8.92 Vti 2 1.311 5 1.041 6 99 4.646 28 4.257 Ear 108 5.64 Qsu 2 1.311 0 0.699 6 101 5.140 36 4.257 Ear 109 0.41 Vti 2 1.354 2 0.845 6 51 4.530 36 4.945 Ear 110 2.47 Vti 1 1.460 0 0.602 4 69 4.791 28 5.640 Ear 111 147.78 Vti 1 1.145 5 0.778 8 32 4.176 28 4.945 Qfa 112 18.94 Vti 2 1.311 5 0.903 8 31 4.252 44 4.945 Ear 113 18.66 Vti 1 0.913 20 0.778 8 54 4.023 38 4.257 Ear 114 0.44 Vti 1 1.311 5 0.602 8 38 4.127 28 4.945 Qfa 115 3.53 Vti 2 1.311 5 0.845 8 39 4.179 30 4.945 Ear 116 0.57 Vti 2 0.913 10 0.845 6 103 4.141 40 5.640 Ear 117 0.09 Vti 1 1.460 0 0.602 4 53 4.798 23 5.640 Ear 118 1.51 Vti 2 1.145 0 0.778 6 20 2.748 18 4.684 Qfa 119 187.80 Vti 2 0.401 0 1.079 6 0 2.483 0 4.684 Qfa 120 7.89 Vti 2 1.311 0 0.845 8 53 3.054 46 3.911 Qfa 121 18.06 Vti 2 1.311 0 0.845 8 58 3.303 32 6.176 Qco 122 0.16 Vti 2 1.311 0 0.903 8 37 3.323 46 6.176 Qco 123 0.09 Vti 2 1.311 0 1.000 8 21 3.253 32 6.176 Qco 124 4.65 Ral 2 1.719 0 0.602 8 31 4.583 38 6.176 Qfa 125 1.76 Vti 1 0.913 0 0.845 4 53 3.018 34 5.640 Qfa 126 1.82 Vti 1 0.913 0 0.903 4 40 2.943 38 5.640 Qfa 127 81.71 Vti 1 1.019 0 0.954 4 74 2.839 36 3.492 Qfa 128 0.60 Vti 1 1.311 0 0.845 4 78 3.045 34 3.492 Qfa 129 3.52 Vti 1 1.019 5 0.602 4 48 3.268 12 2.699 Qfa 130 1.84 Vti 1 0.660 5 0.602 4 81 3.415 38 2.699 Qfa 131 9.03 Qsu 2 1.311 0 0.845 4 23 3.383 30 2.343 Qfa 132 7.33 Qsu 2 0.821 0 0.778 4 48 3.000 10 2.000 Qfa 133 0.57 Vti 2 0.821 0 0.699 4 57 3.476 16 2.000 Qfa 134 5.23 Vti 2 1.019 0 0.903 4 78 3.899 30 3.761 Qco 135 0.13 Vti 2 1.145 0 0.778 4 77 3.924 20 3.761 Qco 136 8.38 Vti 1 1.719 0 0.699 2 23 3.317 30 1.165 Qsu 137 1.98 Vti 1 1.311 0 0.778 2 33 3.421 14 1.165 Qsu 138 3.24 Vti 1 1.019 0 0.845 2 48 3.488 24 1.165 Qsu 139 0.60 Vti 1 0.660 0 0.778 2 57 3.494 22 1.165 Qsu 140 0.09 Vti 1 0.345 2 0.699 2 78 3.658 0 1.165 Qsu 141 0.16 Qsu 1 0.345 0 0.699 2 89 2.850 0 1.165 Qfa 142 0.14 Vti 2 0.523 0 0.845 2 62 4.179 30 2.000 Qfa 143 0.47 Vti 2 0.913 0 0.954 2 18 4.000 24 2.000 Qfa 144 5.65 Vti 2 1.311 5 0.845 4 49 3.851 28 2.343 Qfa 145 0.85 Qsu 1 0.821 5 0.778 4 47 3.268 24 1.902 Qfa 146 0.85 Vti 2 0.913 5 0.699 6 16 3.071 38 4.076 Ear 147 0.66 Vti 2 1.019 5 0.845 6 51 2.943 36 4.076 Ear 148 0.11 Vti 2 1.311 0 0.699 6 65 2.882 32 4.076 Ear 149 0.09 Vti 2 1.719 0 0.699 4 29 3.642 24 6.176 Aun 150 134.70 Qfa 2 1.719 0 0.699 4 69 3.330 24 2.264 Ear 151 1.63 Aun 2 1.019 10 0.602 4 56 3.122 28 4.945 Vti 152 3.04 Vti 1 0.821 25 0.699 4 150 3.170 30 5.254 Ear 153 7.63 Qsu 1 0.523 40 0.778 4 53 3.829 24 4.945 Vti 154 0.97 Aun 3 0.821 15 0.699 4 55 3.446 34 4.457 Ear 155 87.46 Aun 1 1.019 10 0.845 4 48 2.806 0 2.956 Qsu 156 1.77 Qsu 2 1.019 10 0.903 4 66 2.882 28 2.956 Aun 157 1.17 Qsu 2 0.913 20 0.699 4 39 3.114 30 2.781 Aun 158 4.27 Qsu 1 0.913 0 0.699 4 36 2.604 28 1.902 Vti 159 43.20 Qfa 1 1.311 0 0.699 2 24 3.589 28 2.699 Aun 160 19.85 Vti 2 0.821 20 0.602 4 82 3.557 32 3.621 Qfa 161 0.63 Qsu 2 0.913 15 0.778 4 12 3.434 32 4.457 Aun 162 0.57 Vti 2 1.145 0 0.699 4 7 3.080 20 3.492 Ear 163 0.69 Vti 2 1.311 0 0.602 4 82 3.784 30 4.684 Qfa 164 0.79 Vti 3 0.821 15 0.778 4 93 3.231 26 3.621 Qfa 165 116.24 Qfa 4 1.019 10 0.845 6 96 3.458 26 3.761 Ear 166 13.08 Qfa 2 0.913 20 0.845 6 70 3.337 30 5.254 Ear 167 13.36 Qfa 2 0.821 25 0.845 6 47 3.154 34 5.254 Ear 168 9.42 Qsu 2 1.719 0 0.845 6 131 5.131 24 3.911 Ear 169 0.09 Vti 2 1.460 2 1.000 6 103 4.421 28 5.640 Aun 170 0.12 Ral 2 1.311 5 0.954 6 93 5.676 34 5.640 Aun 171 0.82 Vti 2 1.145 10 0.954 6 79 4.486 32 5.640 Aun 172 66.19 Vti 2 1.019 15 0.845 6 25 4.829 24 4.457 Ear 173 8.12 Vti 2 1.092 10 0.845 6 27 4.768 8 4.457 Ear 174 0.75 Vti 2 1.145 10 0.845 6 29 4.873 36 3.621 Ear 175 4.49 Qsu 2 1.145 10 1.000 6 22 5.547 36 3.051 Ear 176 0.17 Vti 1 0.589 20 0.301 6 9 5.297 54 3.911 Ear 177 4.12 Vti 2 1.145 10 0.845 6 20 5.534 36 3.371 Ear 178 1.34 Vti 2 1.145 10 0.778 6 49 5.562 36 3.371 Ear 179 1.48 Vti 1 1.145 10 0.699 6 34 5.574 38 3.258 Aun 180 3.82 Aun 2 1.719 0 0.699 6 54 3.500 38 5.254 Ear 181 15.59 Aun 2 1.460 2 0.000 6 66 3.383 25 5.254 Ear 182 0.66 Aun 2 1.719 0 0.954 6 79 3.452 28 5.254 Ear 183 0.16 Vti 2 1.719 0 0.699 6 89 5.911 22 5.254 Ear 184 0.16 Ral 1 1.460 2 0.845 6 21 5.713 22 4.684 Ear 185 0.11 Vti 1 1.311 5 0.954 6 14 5.285 16 4.684 Ear 186 0.42 Vti 1 1.311 5 0.845 6 14 5.259 22 4.684 Ear 187 0.38 Vti 2 1.719 0 0.477 6 34 5.201 38 5.254 Ear 188 0.09 Vti 2 1.719 0 0.845 6 52 5.123 26 4.684 Qco 189 0.41 Vti 1 1.719 0 0.845 6 71 5.078 28 5.254 Ear 190 2.97 Vti 1 1.311 5 0.477 6 72 5.082 22 3.911 Ear 191 0.13 Vti 1 0.913 10 0.845 6 63 5.138 30 3.911 Ear 192 0.09 Vti 1 1.092 2 0.602 6 43 5.158 36 3.911 Ear 193 0.75 Qsu 2 0.913 10 0.699 6 30 4.970 26 5.254 Ear 194 1.04 Aun 2 1.311 5 0.903 6 98 2.115 20 4.945 Ear 195 0.09 Vti 2 0.821 15 0.778 6 13 5.513 26 4.945 Ear 196 6.79 Vti 2 1.019 10 0.778 6 67 4.649 30 2.220 Qco 197 4.90 Vti 2 1.145 5 0.699 6 78 4.862 38 2.956 Qfa 198 11.39 Vti 2 0.737 10 0.602 6 79 4.947 42 4.257 Qco 199 1.45 Vti 2 0.913 20 0.699 6 74 4.996 44 4.257 Qco 200 0.85 Vti 2 1.719 0 0.699 8 18 4.924 36 2.162 Ear 201 0.85 Vti 3 1.719 0 0.778 8 12 4.964 38 2.162 Ear 202 0.69 Vti 3 1.719 0 0.845 8 23 4.931 30 2.162 Ear . where I could not really find any mistake.. Hope some one can please help me on this. Regards, Sara Mouro [[alternative HTML version deleted]]
Hi Your arguments has different length and therefore the error message data.frame is an object, which resembles a table from Excel, it has the same number of rows in each column>From help page:A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical, factor and character and so on).> x1<-1:5 > x2<-1:3 > x3<-1:10 > data.frame(x1,x2,x3)Error in data.frame(x1, x2, x3) : arguments imply differing number of rows: 5, 3, 10 So you can recycle shorter vectors data.frame(cbind(x1,x2,x3)) or you can use list list(x1,x2,x3) I wonder how did you created your arguments? HTH Petr On 24 May 2006 at 13:05, Sara Mouro wrote: From: "Sara Mouro" <sara at gmesintra.com> To: <r-help at stat.math.ethz.ch> Date sent: Wed, 24 May 2006 13:05:45 +0100 Subject: [R] data.frame> Dear all, > > > > Does any one knows why should I get the following error message, when > trying to do a simple data.frame?? > > > > DataF<-data.frame(Subject,BiomR,Spp,Capas,Litter,Herbs,LitterD,MaxCanH > ,DDifS p,DSSp,Slope, CanDens,NearestSp) > > > > Erro em data.frame(Subject, BiomR, Spp, Capas, Litter, Herbs, LitterD, > : > > arguments imply differing number of rows: 202, 0 > > > > > > The data I am using is: > > > > > Subject > > BiomR > > Spp > > Capas > > Litter > > Herbs > > LitterD > > MaxCanH > > DDifSp > > DSSp > > Slope > > CanDens > > NearestSp > > > 1 > > 140.74 > > Qfa > > 2 > > 1.460 > > 0 > > 0.778 > > 8 > > 70 > > 3.663 > > 28 > > 2.280 > > Ear > > > 2 > > 7.26 > > Aun > > 2 > > 0.660 > > 0 > > 0.477 > > 8 > > 110 > > 3.988 > > 34 > > 2.476 > > Ear > > > 3 > > 68.72 > > Qfa > > 2 > > 1.019 > > 0 > > 1.000 > > 8 > > 48 > > 2.300 > > 48 > > 2.476 > > Ear > > > 4 > > 0.13 > > Vti > > 2 > > 1.719 > > 0 > > 0.903 > > 4 > > 55 > > 4.141 > > 28 > > 3.258 > > Qco > > > 5 > > 2.32 > > Vti > > 2 > > 1.719 > > 0 > > 0.954 > > 4 > > 65 > > 3.984 > > 32 > > 3.051 > > Aun > > > 6 > > 2.97 > > Vti > > 2 > > 1.719 > > 0 > > 0.954 > > 6 > > 201 > > 3.642 > > 22 > > 2.000 > > Qfa > > > 7 > > 0.16 > > Qfa > > 2 > > 1.238 > > 2 > > 0.778 > > 6 > > 72 > > 3.105 > > 20 > > 1.566 > > Vti > > > 8 > > 1.76 > > Qfa > > 2 > > 1.145 > > 0 > > 0.954 > > 6 > > 67 > > 3.383 > > 22 > > 2.052 > > Vti > > > 9 > > 0.35 > > Qfa > > 3 > > 1.092 > > 2 > > 0.778 > > 6 > > 65 > > 3.557 > > 30 > > 2.106 > > Vti > > > 10 > > 0.15 > > Qfa > > 2 > > 1.092 > > 2 > > 0.778 > > 6 > > 42 > > 3.464 > > 14 > > 2.106 > > Vti > > > 11 > > 107.33 > > Qfa > > 3 > > 1.145 > > 5 > > 0.903 > > 8 > > 147 > > 4.035 > > 24 > > 2.220 > > Vti > > > 12 > > 12.32 > > Vti > > 3 > > 1.145 > > 5 > > 1.000 > > 6 > > 208 > > 3.464 > > 28 > > 2.220 > > Qfa > > > 13 > > 1.82 > > Vti > > 3 > > 1.145 > > 5 > > 0.903 > > 6 > > 251 > > 3.458 > > 20 > > 2.220 > > Qfa > > > 14 > > 1.84 > > Vti > > 1 > > 1.019 > > 5 > > 0.602 > > 6 > > 88 > > 3.960 > > 28 > > 1.363 > > Aun > > > 15 > > 3.25 > > Vti > > 2 > > 1.719 > > 0 > > 0.778 > > 6 > > 70 > > 4.319 > > 14 > > 2.621 > > Aun > > > 16 > > 3.60 > > Vti > > 1 > > 1.460 > > 0 > > 0.954 > > 6 > > 53 > > 4.186 > > 26 > > 1.902 > > Aun > > > 17 > > 0.69 > > Vti > > 2 > > 1.238 > > 5 > > 0.845 > > 4 > > 184 > > 3.856 > > 44 > > 2.547 > > Aun > > > 18 > > 1.04 > > Vti > > 1 > > 1.019 > > 5 > > 0.602 > > 4 > > 144 > > 3.911 > > 32 > > 2.052 > > Aun > > > 19 > > 0.08 > > Vti > > 2 > > 1.460 > > 0 > > 0.699 > > 6 > > 93 > > 3.956 > > 36 > > 2.547 > > Qco > > > 20 > > 10.43 > > Vti > > 2 > > 1.145 > > 5 > > 0.903 > > 6 > > 70 > > 3.919 > > 23 > > 3.258 > > Qco > > > 21 > > 0.69 > > Vti > > 3 > > 1.145 > > 5 > > 0.845 > > 8 > > 120 > > 4.023 > > 30 > > 3.051 > > Ear > > > 22 > > 13.47 > > Vti > > 3 > > 1.460 > > 2 > > 0.811 > > 8 > > 39 > > 3.370 > > 42 > > 3.152 > > Ear > > > 23 > > 2.83 > > Vti > > 2 > > 1.019 > > 5 > > 0.845 > > 6 > > 120 > > 4.102 > > 24 > > 3.258 > > Ear > > > 24 > > 1.26 > > Vti > > 2 > > 1.019 > > 5 > > 0.903 > > 6 > > 153 > > 4.116 > > 30 > > 3.152 > > Ear > > > 25 > > 0.25 > > Qfa > > 2 > > 1.145 > > 5 > > 0.845 > > 6 > > 106 > > 4.210 > > 38 > > 2.699 > > Qco > > > 26 > > 28.27 > > Vti > > 2 > > 0.913 > > 10 > > 0.845 > > 6 > > 203 > > 4.688 > > 32 > > 1.566 > > Qco > > > 27 > > 0.88 > > Vti > > 2 > > 1.460 > > 2 > > 0.845 > > 8 > > 52 > > 4.464 > > 30 > > 3.051 > > Qfa > > > 28 > > 0.08 > > Vti > > 2 > > 1.311 > > 0 > > 0.477 > > 8 > > 86 > > 4.486 > > 48 > > 2.956 > > Qfa > > > 29 > > 1.13 > > Vti > > 3 > > 1.019 > > 5 > > 0.845 > > 8 > > 54 > > 4.291 > > 40 > > 3.492 > > Qfa > > > 30 > > 11.03 > > Vti > > 2 > > 0.821 > > 0 > > 0.903 > > 4 > > 130 > > 4.606 > > 42 > > 2.699 > > Ear > > > 31 > > 0.63 > > Vti > > 2 > > 0.821 > > 5 > > 0.845 > > 4 > > 130 > > 4.464 > > 44 > > 2.699 > > Ear > > > 32 > > 0.97 > > Vti > > 2 > > 0.737 > > 0 > > 0.845 > > 4 > > 123 > > 4.562 > > 34 > > 2.699 > > Ear > > > 33 > > 4.94 > > Vti > > 2 > > 0.737 > > 0 > > 0.903 > > 4 > > 123 > > 4.522 > > 48 > > 2.699 > > Ear > > > 34 > > 2.26 > > Vti > > 2 > > 0.821 > > 5 > > 0.778 > > 4 > > 114 > > 4.478 > > 46 > > 2.699 > > Ear > > > 35 > > 0.94 > > Vti > > 2 > > 0.660 > > 0 > > 0.903 > > 4 > > 144 > > 4.516 > > 31 > > 2.699 > > Ear > > > 36 > > 0.69 > > Vti > > 2 > > 0.589 > > 0 > > 0.699 > > 4 > > 146 > > 4.551 > > 35 > > 2.699 > > Ear > > > 37 > > 0.13 > > Vti > > 3 > > 1.019 > > 0 > > 0.845 > > 8 > > 48 > > 4.362 > > 14 > > 2.343 > > Qfa > > > 38 > > 2.12 > > Vti > > 2 > > 0.737 > > 0 > > 1.041 > > 8 > > 52 > > 4.054 > > 24 > > 2.956 > > Qfa > > > 39 > > 1.77 > > Vti > > 2 > > 0.913 > > 0 > > 0.903 > > 8 > > 56 > > 5.198 > > 6 > > 2.621 > > Ear > > > 40 > > 0.32 > > Vti > > 2 > > 1.145 > > 5 > > 0.954 > > 8 > > 118 > > 5.138 > > 35 > > 3.258 > > Ear > > > 41 > > 0.11 > > Vti > > 2 > > 1.019 > > 0 > > 0.602 > > 8 > > 84 > > 5.237 > > 20 > > 2.621 > > Ear > > > 42 > > 1.57 > > Vti > > 1 > > 0.913 > > 0 > > 0.954 > > 6 > > 137 > > 5.038 > > 12 > > 3.492 > > Qco > > > 43 > > 1.77 > > Vti > > 3 > > 0.737 > > 0 > > 0.954 > > 6 > > 141 > > 5.026 > > 16 > > 3.371 > > Qco > > > 44 > > 0.17 > > Vti > > 2 > > 0.913 > > 0 > > 1.000 > > 8 > > 69 > > 4.901 > > 24 > > 3.258 > > Qco > > > 45 > > 0.41 > > Vti > > 3 > > 1.092 > > 2 > > 0.954 > > 8 > > 81 > > 5.129 > > 44 > > 4.457 > > Qfa > > > 46 > > 2.62 > > Vti > > 1 > > 0.913 > > 0 > > 0.845 > > 4 > > 114 > > 5.047 > > 34 > > 4.457 > > Ear > > > 47 > > 0.09 > > Vti > > 3 > > 0.975 > > 2 > > 0.954 > > 8 > > 98 > > 4.924 > > 20 > > 3.492 > > Aun > > > 48 > > 0.12 > > Vti > > 4 > > 1.311 > > 5 > > 0.845 > > 8 > > 78 > > 4.748 > > 26 > > 3.761 > > Aun > > > 49 > > 1.70 > > Vti > > 3 > > 0.975 > > 2 > > 1.000 > > 8 > > 95 > > 5.146 > > 36 > > 4.457 > > Qfa > > > 50 > > 14.49 > > Qfa > > 1 > > 1.719 > > 0 > > 0.778 > > 6 > > 37 > > 2.962 > > 32 > > 1.766 > > Pan > > > 51 > > 0.09 > > Vti > > 2 > > 1.311 > > 0 > > 0.778 > > 6 > > 56 > > 2.872 > > 20 > > 1.950 > > Pan > > > 52 > > 2.12 > > Qfa > > 2 > > 1.460 > > 0 > > 0.845 > > 6 > > 203 > > 3.097 > > 18 > > 3.152 > > Vti > > > 53 > > 0.23 > > Qfa > > 2 > > 1.238 > > 2 > > 0.778 > > 8 > > 86 > > 2.190 > > 30 > > 2.476 > > Ear > > > 54 > > 5.36 > > Qfa > > 2 > > 0.975 > > 0 > > 0.954 > > 6 > > 134 > > 3.409 > > 42 > > 4.684 > > Vti > > > 55 > > 0.41 > > Vti > > 2 > > 1.145 > > 5 > > 0.845 > > 6 > > 108 > > 3.890 > > 36 > > 4.945 > > Qco > > > 56 > > 0.19 > > Vti > > 1 > > 1.719 > > 0 > > 0.845 > > 6 > > 42 > > 4.130 > > 35 > > 3.492 > > Qco > > > 57 > > 15.59 > > Vti > > 3 > > 1.719 > > 0 > > 1.114 > > 6 > > 91 > > 4.386 > > 16 > > 4.257 > > Ear > > > 58 > > 3.25 > > Vti > > 3 > > 1.719 > > 0 > > 0.903 > > 6 > > 85 > > 4.275 > > 36 > > 4.257 > > Ear > > > 59 > > 2.32 > > Vti > > 3 > > 1.460 > > 0 > > 0.954 > > 6 > > 91 > > 4.223 > > 32 > > 4.257 > > Ear > > > 60 > > 4.24 > > Vti > > 3 > > 1.719 > > 0 > > 1.041 > > 6 > > 36 > > 4.386 > > 42 > > 4.257 > > Ear > > > 61 > > 31.49 > > Vti > > 3 > > 1.719 > > 0 > > 1.176 > > 6 > > 78 > > 4.371 > > 43 > > 4.257 > > Ear > > > 62 > > 2.97 > > Vti > > 3 > > 0.786 > > 2 > > 0.954 > > 6 > > 71 > > 3.988 > > 22 > > 4.076 > > Qco > > > 63 > > 0.50 > > Vti > > 3 > > 0.706 > > 2 > > 0.903 > > 6 > > 76 > > 4.134 > > 20 > > 4.076 > > Qco > > > 64 > > 20.20 > > Vti > > 2 > > 1.719 > > 0 > > 1.079 > > 6 > > 62 > > 3.557 > > 18 > > 5.640 > > Qfa > > > 65 > > 0.12 > > Vti > > 1 > > 1.460 > > 0 > > 0.903 > > 6 > > 75 > > 3.186 > > 20 > > 3.152 > > Qfa > > > 66 > > 0.10 > > Vti > > 1 > > 1.719 > > 0 > > 0.903 > > 6 > > 90 > > 3.154 > > 20 > > 3.152 > > Qfa > > > 67 > > 0.79 > > Vti > > 1 > > 1.719 > > 0 > > 0.954 > > 6 > > 64 > > 3.154 > > 12 > > 3.152 > > Ear > > > 68 > > 0.17 > > Vti > > 1 > > 1.719 > > 0 > > 0.954 > > 6 > > 52 > > 3.186 > > 24 > > 3.152 > > Ear > > > 69 > > 0.09 > > Qfa > > 1 > > 0.589 > > 0 > > 0.477 > > 4 > > 55 > > 3.540 > > 32 > > 3.492 > > Ear > > > 70 > > 1.02 > > Vti > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 107 > > 3.816 > > 38 > > 3.911 > > Aun > > > 71 > > 12.67 > > Qfa > > 2 > > 1.719 > > 0 > > 0.954 > > 6 > > 62 > > 3.282 > > 32 > > 4.457 > > Aun > > > 72 > > 32.80 > > Qfa > > 2 > > 1.719 > > 0 > > 0.699 > > 6 > > 56 > > 2.962 > > 32 > > 4.076 > > Aun > > > 73 > > 26.64 > > Qfa > > 2 > > 1.719 > > 0 > > 0.699 > > 6 > > 76 > > 2.893 > > 32 > > 4.076 > > Aun > > > 74 > > 0.09 > > Vti > > 3 > > 1.460 > > 0 > > 0.845 > > 6 > > 110 > > 3.851 > > 24 > > 4.684 > > Aun > > > 75 > > 103.14 > > Qfa > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 124 > > 3.703 > > 28 > > 4.257 > > Aun > > > 76 > > 0.09 > > Vti > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 156 > > 3.637 > > 26 > > 4.257 > > Aun > > > 77 > > 248.11 > > Qfa > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 144 > > 3.807 > > 33 > > 4.257 > > Aun > > > 78 > > 2.19 > > Vti > > 3 > > 1.311 > > 0 > > 1.000 > > 8 > > 63 > > 3.458 > > 28 > > 4.257 > > Aun > > > 79 > > 29.90 > > Vti > > 1 > > 1.719 > > 0 > > 1.000 > > 6 > > 46 > > 2.711 > > 30 > > 3.621 > > Qsu > > > 80 > > 17.81 > > Ral > > 2 > > 1.460 > > 0 > > 1.000 > > 8 > > 55 > > 4.516 > > 10 > > 4.945 > > Aun > > > 81 > > 0.11 > > Vti > > 2 > > 1.311 > > 0 > > 0.954 > > 6 > > 84 > > 4.189 > > 10 > > 5.640 > > Ear > > > 82 > > 0.53 > > Vti > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 23 > > 4.389 > > 24 > > 4.945 > > Ear > > > 83 > > 10.30 > > Ral > > 3 > > 1.460 > > 0 > > 0.903 > > 8 > > 42 > > 4.843 > > 20 > > 5.640 > > Qco > > > 84 > > 41.56 > > Vti > > 2 > > 1.460 > > 0 > > 0.778 > > 6 > > 74 > > 4.008 > > 40 > > 5.254 > > Qfa > > > 85 > > 11.52 > > Qfa > > 2 > > 1.719 > > 0 > > 0.845 > > 8 > > 77 > > 3.611 > > 34 > > 5.640 > > Aun > > > 86 > > 113.61 > > Qfa > > 3 > > 1.719 > > 0 > > 1.000 > > 6 > > 46 > > 2.795 > > 28 > > 4.945 > > Ear > > > 87 > > 0.09 > > Vti > > 2 > > 1.145 > > 0 > > 0.778 > > 6 > > 96 > > 3.505 > > 34 > > 6.176 > > Qfa > > > 88 > > 7.63 > > Ral > > 3 > > 1.719 > > 0 > > 0.845 > > 6 > > 45 > > 3.344 > > 38 > > 5.254 > > Vti > > > 89 > > 0.09 > > Vti > > 2 > > 0.913 > > 0 > > 0.602 > > 6 > > 66 > > 3.980 > > 22 > > 4.945 > > Aun > > > 90 > > 98.52 > > Qfa > > 2 > > 1.719 > > 0 > > 0.602 > > 6 > > 65 > > 3.924 > > 24 > > 4.945 > > Aun > > > 91 > > 6.41 > > Qfa > > 1 > > 0.291 > > 60 > > 0.845 > > 6 > > 121 > > 3.500 > > 30 > > 3.152 > > Aun > > > 92 > > 0.47 > > Vti > > 1 > > 1.019 > > 5 > > 0.602 > > 6 > > 107 > > 4.380 > > 22 > > 3.152 > > Ear > > > 93 > > 0.14 > > Vti > > 1 > > 1.145 > > 5 > > 0.699 > > 6 > > 56 > > 4.288 > > 28 > > 4.457 > > Aun > > > 94 > > 1.98 > > Vti > > 1 > > 1.145 > > 5 > > 0.602 > > 6 > > 75 > > 4.325 > > 28 > > 4.457 > > Aun > > > 95 > > 6.41 > > Vti > > 1 > > 0.460 > > 50 > > 0.778 > > 6 > > 60 > > 4.559 > > 20 > > 4.257 > > Ear > > > 96 > > 3.53 > > Vti > > 1 > > 0.523 > > 45 > > 0.778 > > 6 > > 127 > > 4.559 > > 22 > > 4.257 > > Ear > > > 97 > > 0.57 > > Vti > > 1 > > 0.523 > > 40 > > 0.699 > > 6 > > 90 > > 4.500 > > 30 > > 4.257 > > Ear > > > 98 > > 2.76 > > Vti > > 1 > > 0.345 > > 60 > > 0.602 > > 6 > > 116 > > 4.598 > > 22 > > 4.257 > > Ear > > > 99 > > 1.70 > > Vti > > 1 > > 0.240 > > 70 > > 0.954 > > 6 > > 76 > > 4.644 > > 36 > > 3.258 > > Ear > > > 100 > > 0.91 > > Vti > > 1 > > 0.240 > > 70 > > 0.954 > > 6 > > 81 > > 4.724 > > 35 > > 3.258 > > Ear > > > 101 > > 18.65 > > Vti > > 1 > > 0.523 > > 45 > > 0.903 > > 6 > > 57 > > 4.780 > > 30 > > 3.258 > > Qco > > > 102 > > 0.16 > > Vti > > 1 > > 1.719 > > 0 > > 0.845 > > 4 > > 79 > > 4.845 > > 40 > > 5.640 > > Aun > > > 103 > > 0.09 > > Vti > > 2 > > 1.719 > > 0 > > 0.602 > > 6 > > 103 > > 4.538 > > 30 > > 4.076 > > Ear > > > 104 > > 1.63 > > Vti > > 1 > > 1.719 > > 0 > > 0.778 > > 6 > > 84 > > 4.540 > > 36 > > 4.257 > > Ear > > > 105 > > 15.51 > > Vti > > 1 > > 1.460 > > 2 > > 0.602 > > 6 > > 102 > > 4.601 > > 30 > > 4.257 > > Ear > > > 106 > > 2.26 > > Vti > > 2 > > 1.719 > > 0 > > 0.699 > > 6 > > 72 > > 4.593 > > 38 > > 4.257 > > Ear > > > 107 > > 8.92 > > Vti > > 2 > > 1.311 > > 5 > > 1.041 > > 6 > > 99 > > 4.646 > > 28 > > 4.257 > > Ear > > > 108 > > 5.64 > > Qsu > > 2 > > 1.311 > > 0 > > 0.699 > > 6 > > 101 > > 5.140 > > 36 > > 4.257 > > Ear > > > 109 > > 0.41 > > Vti > > 2 > > 1.354 > > 2 > > 0.845 > > 6 > > 51 > > 4.530 > > 36 > > 4.945 > > Ear > > > 110 > > 2.47 > > Vti > > 1 > > 1.460 > > 0 > > 0.602 > > 4 > > 69 > > 4.791 > > 28 > > 5.640 > > Ear > > > 111 > > 147.78 > > Vti > > 1 > > 1.145 > > 5 > > 0.778 > > 8 > > 32 > > 4.176 > > 28 > > 4.945 > > Qfa > > > 112 > > 18.94 > > Vti > > 2 > > 1.311 > > 5 > > 0.903 > > 8 > > 31 > > 4.252 > > 44 > > 4.945 > > Ear > > > 113 > > 18.66 > > Vti > > 1 > > 0.913 > > 20 > > 0.778 > > 8 > > 54 > > 4.023 > > 38 > > 4.257 > > Ear > > > 114 > > 0.44 > > Vti > > 1 > > 1.311 > > 5 > > 0.602 > > 8 > > 38 > > 4.127 > > 28 > > 4.945 > > Qfa > > > 115 > > 3.53 > > Vti > > 2 > > 1.311 > > 5 > > 0.845 > > 8 > > 39 > > 4.179 > > 30 > > 4.945 > > Ear > > > 116 > > 0.57 > > Vti > > 2 > > 0.913 > > 10 > > 0.845 > > 6 > > 103 > > 4.141 > > 40 > > 5.640 > > Ear > > > 117 > > 0.09 > > Vti > > 1 > > 1.460 > > 0 > > 0.602 > > 4 > > 53 > > 4.798 > > 23 > > 5.640 > > Ear > > > 118 > > 1.51 > > Vti > > 2 > > 1.145 > > 0 > > 0.778 > > 6 > > 20 > > 2.748 > > 18 > > 4.684 > > Qfa > > > 119 > > 187.80 > > Vti > > 2 > > 0.401 > > 0 > > 1.079 > > 6 > > 0 > > 2.483 > > 0 > > 4.684 > > Qfa > > > 120 > > 7.89 > > Vti > > 2 > > 1.311 > > 0 > > 0.845 > > 8 > > 53 > > 3.054 > > 46 > > 3.911 > > Qfa > > > 121 > > 18.06 > > Vti > > 2 > > 1.311 > > 0 > > 0.845 > > 8 > > 58 > > 3.303 > > 32 > > 6.176 > > Qco > > > 122 > > 0.16 > > Vti > > 2 > > 1.311 > > 0 > > 0.903 > > 8 > > 37 > > 3.323 > > 46 > > 6.176 > > Qco > > > 123 > > 0.09 > > Vti > > 2 > > 1.311 > > 0 > > 1.000 > > 8 > > 21 > > 3.253 > > 32 > > 6.176 > > Qco > > > 124 > > 4.65 > > Ral > > 2 > > 1.719 > > 0 > > 0.602 > > 8 > > 31 > > 4.583 > > 38 > > 6.176 > > Qfa > > > 125 > > 1.76 > > Vti > > 1 > > 0.913 > > 0 > > 0.845 > > 4 > > 53 > > 3.018 > > 34 > > 5.640 > > Qfa > > > 126 > > 1.82 > > Vti > > 1 > > 0.913 > > 0 > > 0.903 > > 4 > > 40 > > 2.943 > > 38 > > 5.640 > > Qfa > > > 127 > > 81.71 > > Vti > > 1 > > 1.019 > > 0 > > 0.954 > > 4 > > 74 > > 2.839 > > 36 > > 3.492 > > Qfa > > > 128 > > 0.60 > > Vti > > 1 > > 1.311 > > 0 > > 0.845 > > 4 > > 78 > > 3.045 > > 34 > > 3.492 > > Qfa > > > 129 > > 3.52 > > Vti > > 1 > > 1.019 > > 5 > > 0.602 > > 4 > > 48 > > 3.268 > > 12 > > 2.699 > > Qfa > > > 130 > > 1.84 > > Vti > > 1 > > 0.660 > > 5 > > 0.602 > > 4 > > 81 > > 3.415 > > 38 > > 2.699 > > Qfa > > > 131 > > 9.03 > > Qsu > > 2 > > 1.311 > > 0 > > 0.845 > > 4 > > 23 > > 3.383 > > 30 > > 2.343 > > Qfa > > > 132 > > 7.33 > > Qsu > > 2 > > 0.821 > > 0 > > 0.778 > > 4 > > 48 > > 3.000 > > 10 > > 2.000 > > Qfa > > > 133 > > 0.57 > > Vti > > 2 > > 0.821 > > 0 > > 0.699 > > 4 > > 57 > > 3.476 > > 16 > > 2.000 > > Qfa > > > 134 > > 5.23 > > Vti > > 2 > > 1.019 > > 0 > > 0.903 > > 4 > > 78 > > 3.899 > > 30 > > 3.761 > > Qco > > > 135 > > 0.13 > > Vti > > 2 > > 1.145 > > 0 > > 0.778 > > 4 > > 77 > > 3.924 > > 20 > > 3.761 > > Qco > > > 136 > > 8.38 > > Vti > > 1 > > 1.719 > > 0 > > 0.699 > > 2 > > 23 > > 3.317 > > 30 > > 1.165 > > Qsu > > > 137 > > 1.98 > > Vti > > 1 > > 1.311 > > 0 > > 0.778 > > 2 > > 33 > > 3.421 > > 14 > > 1.165 > > Qsu > > > 138 > > 3.24 > > Vti > > 1 > > 1.019 > > 0 > > 0.845 > > 2 > > 48 > > 3.488 > > 24 > > 1.165 > > Qsu > > > 139 > > 0.60 > > Vti > > 1 > > 0.660 > > 0 > > 0.778 > > 2 > > 57 > > 3.494 > > 22 > > 1.165 > > Qsu > > > 140 > > 0.09 > > Vti > > 1 > > 0.345 > > 2 > > 0.699 > > 2 > > 78 > > 3.658 > > 0 > > 1.165 > > Qsu > > > 141 > > 0.16 > > Qsu > > 1 > > 0.345 > > 0 > > 0.699 > > 2 > > 89 > > 2.850 > > 0 > > 1.165 > > Qfa > > > 142 > > 0.14 > > Vti > > 2 > > 0.523 > > 0 > > 0.845 > > 2 > > 62 > > 4.179 > > 30 > > 2.000 > > Qfa > > > 143 > > 0.47 > > Vti > > 2 > > 0.913 > > 0 > > 0.954 > > 2 > > 18 > > 4.000 > > 24 > > 2.000 > > Qfa > > > 144 > > 5.65 > > Vti > > 2 > > 1.311 > > 5 > > 0.845 > > 4 > > 49 > > 3.851 > > 28 > > 2.343 > > Qfa > > > 145 > > 0.85 > > Qsu > > 1 > > 0.821 > > 5 > > 0.778 > > 4 > > 47 > > 3.268 > > 24 > > 1.902 > > Qfa > > > 146 > > 0.85 > > Vti > > 2 > > 0.913 > > 5 > > 0.699 > > 6 > > 16 > > 3.071 > > 38 > > 4.076 > > Ear > > > 147 > > 0.66 > > Vti > > 2 > > 1.019 > > 5 > > 0.845 > > 6 > > 51 > > 2.943 > > 36 > > 4.076 > > Ear > > > 148 > > 0.11 > > Vti > > 2 > > 1.311 > > 0 > > 0.699 > > 6 > > 65 > > 2.882 > > 32 > > 4.076 > > Ear > > > 149 > > 0.09 > > Vti > > 2 > > 1.719 > > 0 > > 0.699 > > 4 > > 29 > > 3.642 > > 24 > > 6.176 > > Aun > > > 150 > > 134.70 > > Qfa > > 2 > > 1.719 > > 0 > > 0.699 > > 4 > > 69 > > 3.330 > > 24 > > 2.264 > > Ear > > > 151 > > 1.63 > > Aun > > 2 > > 1.019 > > 10 > > 0.602 > > 4 > > 56 > > 3.122 > > 28 > > 4.945 > > Vti > > > 152 > > 3.04 > > Vti > > 1 > > 0.821 > > 25 > > 0.699 > > 4 > > 150 > > 3.170 > > 30 > > 5.254 > > Ear > > > 153 > > 7.63 > > Qsu > > 1 > > 0.523 > > 40 > > 0.778 > > 4 > > 53 > > 3.829 > > 24 > > 4.945 > > Vti > > > 154 > > 0.97 > > Aun > > 3 > > 0.821 > > 15 > > 0.699 > > 4 > > 55 > > 3.446 > > 34 > > 4.457 > > Ear > > > 155 > > 87.46 > > Aun > > 1 > > 1.019 > > 10 > > 0.845 > > 4 > > 48 > > 2.806 > > 0 > > 2.956 > > Qsu > > > 156 > > 1.77 > > Qsu > > 2 > > 1.019 > > 10 > > 0.903 > > 4 > > 66 > > 2.882 > > 28 > > 2.956 > > Aun > > > 157 > > 1.17 > > Qsu > > 2 > > 0.913 > > 20 > > 0.699 > > 4 > > 39 > > 3.114 > > 30 > > 2.781 > > Aun > > > 158 > > 4.27 > > Qsu > > 1 > > 0.913 > > 0 > > 0.699 > > 4 > > 36 > > 2.604 > > 28 > > 1.902 > > Vti > > > 159 > > 43.20 > > Qfa > > 1 > > 1.311 > > 0 > > 0.699 > > 2 > > 24 > > 3.589 > > 28 > > 2.699 > > Aun > > > 160 > > 19.85 > > Vti > > 2 > > 0.821 > > 20 > > 0.602 > > 4 > > 82 > > 3.557 > > 32 > > 3.621 > > Qfa > > > 161 > > 0.63 > > Qsu > > 2 > > 0.913 > > 15 > > 0.778 > > 4 > > 12 > > 3.434 > > 32 > > 4.457 > > Aun > > > 162 > > 0.57 > > Vti > > 2 > > 1.145 > > 0 > > 0.699 > > 4 > > 7 > > 3.080 > > 20 > > 3.492 > > Ear > > > 163 > > 0.69 > > Vti > > 2 > > 1.311 > > 0 > > 0.602 > > 4 > > 82 > > 3.784 > > 30 > > 4.684 > > Qfa > > > 164 > > 0.79 > > Vti > > 3 > > 0.821 > > 15 > > 0.778 > > 4 > > 93 > > 3.231 > > 26 > > 3.621 > > Qfa > > > 165 > > 116.24 > > Qfa > > 4 > > 1.019 > > 10 > > 0.845 > > 6 > > 96 > > 3.458 > > 26 > > 3.761 > > Ear > > > 166 > > 13.08 > > Qfa > > 2 > > 0.913 > > 20 > > 0.845 > > 6 > > 70 > > 3.337 > > 30 > > 5.254 > > Ear > > > 167 > > 13.36 > > Qfa > > 2 > > 0.821 > > 25 > > 0.845 > > 6 > > 47 > > 3.154 > > 34 > > 5.254 > > Ear > > > 168 > > 9.42 > > Qsu > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 131 > > 5.131 > > 24 > > 3.911 > > Ear > > > 169 > > 0.09 > > Vti > > 2 > > 1.460 > > 2 > > 1.000 > > 6 > > 103 > > 4.421 > > 28 > > 5.640 > > Aun > > > 170 > > 0.12 > > Ral > > 2 > > 1.311 > > 5 > > 0.954 > > 6 > > 93 > > 5.676 > > 34 > > 5.640 > > Aun > > > 171 > > 0.82 > > Vti > > 2 > > 1.145 > > 10 > > 0.954 > > 6 > > 79 > > 4.486 > > 32 > > 5.640 > > Aun > > > 172 > > 66.19 > > Vti > > 2 > > 1.019 > > 15 > > 0.845 > > 6 > > 25 > > 4.829 > > 24 > > 4.457 > > Ear > > > 173 > > 8.12 > > Vti > > 2 > > 1.092 > > 10 > > 0.845 > > 6 > > 27 > > 4.768 > > 8 > > 4.457 > > Ear > > > 174 > > 0.75 > > Vti > > 2 > > 1.145 > > 10 > > 0.845 > > 6 > > 29 > > 4.873 > > 36 > > 3.621 > > Ear > > > 175 > > 4.49 > > Qsu > > 2 > > 1.145 > > 10 > > 1.000 > > 6 > > 22 > > 5.547 > > 36 > > 3.051 > > Ear > > > 176 > > 0.17 > > Vti > > 1 > > 0.589 > > 20 > > 0.301 > > 6 > > 9 > > 5.297 > > 54 > > 3.911 > > Ear > > > 177 > > 4.12 > > Vti > > 2 > > 1.145 > > 10 > > 0.845 > > 6 > > 20 > > 5.534 > > 36 > > 3.371 > > Ear > > > 178 > > 1.34 > > Vti > > 2 > > 1.145 > > 10 > > 0.778 > > 6 > > 49 > > 5.562 > > 36 > > 3.371 > > Ear > > > 179 > > 1.48 > > Vti > > 1 > > 1.145 > > 10 > > 0.699 > > 6 > > 34 > > 5.574 > > 38 > > 3.258 > > Aun > > > 180 > > 3.82 > > Aun > > 2 > > 1.719 > > 0 > > 0.699 > > 6 > > 54 > > 3.500 > > 38 > > 5.254 > > Ear > > > 181 > > 15.59 > > Aun > > 2 > > 1.460 > > 2 > > 0.000 > > 6 > > 66 > > 3.383 > > 25 > > 5.254 > > Ear > > > 182 > > 0.66 > > Aun > > 2 > > 1.719 > > 0 > > 0.954 > > 6 > > 79 > > 3.452 > > 28 > > 5.254 > > Ear > > > 183 > > 0.16 > > Vti > > 2 > > 1.719 > > 0 > > 0.699 > > 6 > > 89 > > 5.911 > > 22 > > 5.254 > > Ear > > > 184 > > 0.16 > > Ral > > 1 > > 1.460 > > 2 > > 0.845 > > 6 > > 21 > > 5.713 > > 22 > > 4.684 > > Ear > > > 185 > > 0.11 > > Vti > > 1 > > 1.311 > > 5 > > 0.954 > > 6 > > 14 > > 5.285 > > 16 > > 4.684 > > Ear > > > 186 > > 0.42 > > Vti > > 1 > > 1.311 > > 5 > > 0.845 > > 6 > > 14 > > 5.259 > > 22 > > 4.684 > > Ear > > > 187 > > 0.38 > > Vti > > 2 > > 1.719 > > 0 > > 0.477 > > 6 > > 34 > > 5.201 > > 38 > > 5.254 > > Ear > > > 188 > > 0.09 > > Vti > > 2 > > 1.719 > > 0 > > 0.845 > > 6 > > 52 > > 5.123 > > 26 > > 4.684 > > Qco > > > 189 > > 0.41 > > Vti > > 1 > > 1.719 > > 0 > > 0.845 > > 6 > > 71 > > 5.078 > > 28 > > 5.254 > > Ear > > > 190 > > 2.97 > > Vti > > 1 > > 1.311 > > 5 > > 0.477 > > 6 > > 72 > > 5.082 > > 22 > > 3.911 > > Ear > > > 191 > > 0.13 > > Vti > > 1 > > 0.913 > > 10 > > 0.845 > > 6 > > 63 > > 5.138 > > 30 > > 3.911 > > Ear > > > 192 > > 0.09 > > Vti > > 1 > > 1.092 > > 2 > > 0.602 > > 6 > > 43 > > 5.158 > > 36 > > 3.911 > > Ear > > > 193 > > 0.75 > > Qsu > > 2 > > 0.913 > > 10 > > 0.699 > > 6 > > 30 > > 4.970 > > 26 > > 5.254 > > Ear > > > 194 > > 1.04 > > Aun > > 2 > > 1.311 > > 5 > > 0.903 > > 6 > > 98 > > 2.115 > > 20 > > 4.945 > > Ear > > > 195 > > 0.09 > > Vti > > 2 > > 0.821 > > 15 > > 0.778 > > 6 > > 13 > > 5.513 > > 26 > > 4.945 > > Ear > > > 196 > > 6.79 > > Vti > > 2 > > 1.019 > > 10 > > 0.778 > > 6 > > 67 > > 4.649 > > 30 > > 2.220 > > Qco > > > 197 > > 4.90 > > Vti > > 2 > > 1.145 > > 5 > > 0.699 > > 6 > > 78 > > 4.862 > > 38 > > 2.956 > > Qfa > > > 198 > > 11.39 > > Vti > > 2 > > 0.737 > > 10 > > 0.602 > > 6 > > 79 > > 4.947 > > 42 > > 4.257 > > Qco > > > 199 > > 1.45 > > Vti > > 2 > > 0.913 > > 20 > > 0.699 > > 6 > > 74 > > 4.996 > > 44 > > 4.257 > > Qco > > > 200 > > 0.85 > > Vti > > 2 > > 1.719 > > 0 > > 0.699 > > 8 > > 18 > > 4.924 > > 36 > > 2.162 > > Ear > > > 201 > > 0.85 > > Vti > > 3 > > 1.719 > > 0 > > 0.778 > > 8 > > 12 > > 4.964 > > 38 > > 2.162 > > Ear > > > 202 > > 0.69 > > Vti > > 3 > > 1.719 > > 0 > > 0.845 > > 8 > > 23 > > 4.931 > > 30 > > 2.162 > > Ear > > > > > > . where I could not really find any mistake.. > > > > Hope some one can please help me on this. > > > > Regards, > > Sara Mouro > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! > http://www.R-project.org/posting-guide.htmlPetr Pikal petr.pikal at precheza.cz
Sara, You didn't read your data into R correctly. If your data are really in the form you posted (one long column of mixed data types and lots of blank lines), then I would: 1. remove the blank lines with my text editor and save (say, mydata.txt) 2. scan() the variable names into a vector nm <- scan("mydata.txt", what = "", nlines = 13) 3. scan() the data values into a list x <- scan("mydata.txt", what = list(0,0,"",0,0,0,0,0,0,0,0,0,""), skip = 13) 4. attach the names names(x) <- nm 5. convert to data frame DF <- data.frame(x) (You really shouldn't post your whole data set; a couple of records would have been sufficient.) Peter Ehlers Sara Mouro wrote:> Dear all, > > > > Does any one knows why should I get the following error message, when trying > to do a simple data.frame?? > > > > DataF<-data.frame(Subject,BiomR,Spp,Capas,Litter,Herbs,LitterD,MaxCanH,DDifS > p,DSSp,Slope, CanDens,NearestSp) > > > > Erro em data.frame(Subject, BiomR, Spp, Capas, Litter, Herbs, LitterD, : > > arguments imply differing number of rows: 202, 0 > > > > > > The data I am using is: > > > > > Subject > > BiomR > > Spp > > Capas > > Litter > > Herbs > > LitterD > > MaxCanH > > DDifSp > > DSSp > > Slope > > CanDens > > NearestSp > > > 1 > > 140.74 > > Qfa > > 2 > > 1.460 > > 0 > > 0.778 > > 8 > > 70 > > 3.663 > > 28 > > 2.280 > > Ear > > > 2 > > 7.26 > > Aun > > 2 > > 0.660 > > 0 > > 0.477 > > 8 > > 110 > > 3.988 > > 34 > > 2.476 > > Ear >