#short example version of input file with 2 runs and 5 time steps (instead of 17 runs and 500 time steps) run t cover 1 1 0.234306 1 2 0.188896 1 3 0.198193 1 4 0.213959 1 5 0.184952 2 1 0.189316 2 2 0.185631 2 3 0.20211 2 4 0.216064 2 5 0.216064 #calculate the correlation of lag 1 over 17 replicates a<-0 for (i in 1:17) { c<-ts( cover[run==i] ) d<-acf( c, lag=1, plot=F) a<-a+d$acf[2] } a<-a/17 a #[1] 0.9021463 #mixed effects model model1<-lme(cover~t,random=~t|run, method="ML") model2<-update(model1,correlation=corCAR1(0.902,form=~t|run)) anova(model1,model2) But this just gives significance for a lag of 1, so I tried to find out the correlation at greater lags with arima to be able to use corARMA() as correlation structure: arima(cover[run==1],order=c(100,0,0)) #does not work: “error in polyroot(z): polynomial degree too high” Any ideas to solve this? Maybe, I don’t even need a mixed effects model? I would be very grateful for any help Katrin -- Katrin Meyer Institute of Ecology Friedrich-Schiller-University Dornburger Str. 159 D- 07743 Jena Germany "Feel free" mit GMX FreeMail! Monat für Monat 10 FreeSMS inklusive! http://www.gmx.net