Jeff D. Hamann
2006-Feb-07 23:23 UTC
[R] getting strata/cluster level values with survey package?
First, I appoligise for the rooky question, but... I'm trying to obtain standard errors, confidence intervals, etc. from a sample design and have been trouble getting the results for anything other than the basic total or mean for the overall survey from the survey package. For example, using the following dataset, strata,cluster,vol A,1,18.58556192 A,1,12.55175443 A,1,21.65882438 A,1,17.11172946 A,1,15.41713348 A,2,13.9344623 A,2,17.13104821 A,2,14.6806479 A,2,14.68357291 A,2,18.86017714 A,2,20.67642515 A,2,15.15295351 A,2,13.82121102 A,2,12.9110477 A,2,14.83153677 A,2,21.90772687 A,3,18.69795427 A,3,18.45636428 A,3,15.77175793 A,3,15.54715217 A,3,20.31948393 A,3,19.26391445 A,3,15.54750775 A,3,19.18724018 A,4,12.89572151 A,4,12.92047701 A,4,12.64958757 A,4,19.85888418 A,4,19.64057669 A,4,19.19188964 A,4,18.81619298 A,4,21.73670878 A,5,15.99430802 A,5,18.66666517 A,5,21.80441654 A,5,14.22081904 A,5,16.01576433 A,5,14.92497202 A,5,17.95123218 A,5,19.82027165 A,5,19.35698273 A,5,19.10826519 B,6,13.40892677 B,6,14.3956207 B,6,13.82113391 B,6,16.37338569 B,6,19.70159575 B,7,14.74334178 B,7,16.55125245 B,7,12.38329798 B,7,18.16472408 B,7,16.32938475 B,7,16.06465494 B,7,12.63086062 B,7,14.46114813 B,7,21.90134013 B,7,13.81025827 B,7,15.85805494 B,7,20.18195326 B,8,19.05120792 B,8,12.83856639 B,8,12.61360139 B,8,21.30434314 B,8,14.19960469 B,8,17.38397826 B,8,15.66477339 B,8,22.07182834 B,8,12.07487394 B,8,20.36357359 B,8,20.2543677 B,9,14.44499362 B,9,17.77235228 B,9,13.01620902 B,9,18.10976359 B,10,18.22350661 B,10,18.41504728 B,10,17.94735486 B,10,18.39173938 B,10,14.21729704 B,10,16.95753684 B,10,21.11643087 B,10,16.09688752 B,10,19.54707452 B,10,22.00450065 B,10,15.15308873 B,10,14.72488972 B,10,17.65280737 B,10,14.61615255 B,10,12.89525607 B,11,22.35831089 B,11,18.0853187 B,11,22.12815791 B,11,17.74562214 B,11,21.45724242 B,11,20.57933779 B,11,19.97397415 B,11,16.34967424 B,12,22.14385376 B,12,17.82816113 B,12,18.37056381 B,12,16.13152759 B,12,22.06764318 B,12,12.80924472 B,12,18.95522175 B,13,20.40554286 B,13,19.72951878 C,14,15.51581 C,14,15.4836358 C,14,13.35882363 C,14,13.16072916 C,14,21.69168971 C,14,19.09686303 C,14,14.47450457 C,14,12.04870424 C,14,13.33096141 C,14,17.38388981 C,14,16.29015289 C,14,16.32707754 C,14,16.2784054 C,15,15.0170597 C,15,14.95767365 C,15,15.20739614 C,15,22.10458509 C,15,12.3362457 C,15,19.87895753 C,15,18.8363682 C,15,16.43738666 C,15,12.84570744 C,15,15.99869357 C,15,14.42551321 C,15,13.63489872 C,15,15.67179885 C,16,14.61700901 C,16,14.64864676 C,16,14.13014582 C,16,21.7637441 C,16,20.66825543 C,16,17.05977818 C,16,17.80118916 C,16,15.16641698 where this is read into stand.data. When I use the following survey designs, srv1 <- svydesign(ids=~1, strata=~strata, data=stand.data ) or, srv1 <- svydesign(ids=~cluster, strata=~strata, data=stand.data ) with, print( svytotal( ~vol, srv1 ) ) I only obtain the total,> print( svytotal( ~vol, srv1 ) )total SE vol 2377 34.464 or worse, print( svytotal( ~vol + strata, srv1 ) ) total SE vol 2377.0 34.464 strataA 42.0 0.000 strataB 64.0 0.000 strataC 34.0 0.000 which reports the number of observations in each of the strata. I'm sure this is a RTFM question, but I just need a start. The size of each "plot" is 0.04 units (hectares) and I want to be able to quickly examine working up each sample with and without clusters (this is going to be part of a larger simulation study). I'm trying to not use SAS for this and hate to admit defeat. Thanks, Jeff.
Jeff D. Hamann
2006-Feb-07 23:24 UTC
[R] getting strata/cluster level values with survey package?
First, I appoligise for the rookie question, but... I'm trying to obtain standard errors, confidence intervals, etc. from a sample design and have been trouble getting the results for anything other than the basic total or mean for the overall survey from the survey package. For example, using the following dataset, strata,cluster,vol A,1,18.58556192 A,1,12.55175443 A,1,21.65882438 A,1,17.11172946 A,1,15.41713348 A,2,13.9344623 A,2,17.13104821 A,2,14.6806479 A,2,14.68357291 A,2,18.86017714 A,2,20.67642515 A,2,15.15295351 A,2,13.82121102 A,2,12.9110477 A,2,14.83153677 A,2,21.90772687 A,3,18.69795427 A,3,18.45636428 A,3,15.77175793 A,3,15.54715217 A,3,20.31948393 A,3,19.26391445 A,3,15.54750775 A,3,19.18724018 A,4,12.89572151 A,4,12.92047701 A,4,12.64958757 A,4,19.85888418 A,4,19.64057669 A,4,19.19188964 A,4,18.81619298 A,4,21.73670878 A,5,15.99430802 A,5,18.66666517 A,5,21.80441654 A,5,14.22081904 A,5,16.01576433 A,5,14.92497202 A,5,17.95123218 A,5,19.82027165 A,5,19.35698273 A,5,19.10826519 B,6,13.40892677 B,6,14.3956207 B,6,13.82113391 B,6,16.37338569 B,6,19.70159575 B,7,14.74334178 B,7,16.55125245 B,7,12.38329798 B,7,18.16472408 B,7,16.32938475 B,7,16.06465494 B,7,12.63086062 B,7,14.46114813 B,7,21.90134013 B,7,13.81025827 B,7,15.85805494 B,7,20.18195326 B,8,19.05120792 B,8,12.83856639 B,8,12.61360139 B,8,21.30434314 B,8,14.19960469 B,8,17.38397826 B,8,15.66477339 B,8,22.07182834 B,8,12.07487394 B,8,20.36357359 B,8,20.2543677 B,9,14.44499362 B,9,17.77235228 B,9,13.01620902 B,9,18.10976359 B,10,18.22350661 B,10,18.41504728 B,10,17.94735486 B,10,18.39173938 B,10,14.21729704 B,10,16.95753684 B,10,21.11643087 B,10,16.09688752 B,10,19.54707452 B,10,22.00450065 B,10,15.15308873 B,10,14.72488972 B,10,17.65280737 B,10,14.61615255 B,10,12.89525607 B,11,22.35831089 B,11,18.0853187 B,11,22.12815791 B,11,17.74562214 B,11,21.45724242 B,11,20.57933779 B,11,19.97397415 B,11,16.34967424 B,12,22.14385376 B,12,17.82816113 B,12,18.37056381 B,12,16.13152759 B,12,22.06764318 B,12,12.80924472 B,12,18.95522175 B,13,20.40554286 B,13,19.72951878 C,14,15.51581 C,14,15.4836358 C,14,13.35882363 C,14,13.16072916 C,14,21.69168971 C,14,19.09686303 C,14,14.47450457 C,14,12.04870424 C,14,13.33096141 C,14,17.38388981 C,14,16.29015289 C,14,16.32707754 C,14,16.2784054 C,15,15.0170597 C,15,14.95767365 C,15,15.20739614 C,15,22.10458509 C,15,12.3362457 C,15,19.87895753 C,15,18.8363682 C,15,16.43738666 C,15,12.84570744 C,15,15.99869357 C,15,14.42551321 C,15,13.63489872 C,15,15.67179885 C,16,14.61700901 C,16,14.64864676 C,16,14.13014582 C,16,21.7637441 C,16,20.66825543 C,16,17.05977818 C,16,17.80118916 C,16,15.16641698 where this is read into stand.data. When I use the following survey designs, srv1 <- svydesign(ids=~1, strata=~strata, data=stand.data ) or, srv1 <- svydesign(ids=~cluster, strata=~strata, data=stand.data ) with, print( svytotal( ~vol, srv1 ) ) I only obtain the total,> print( svytotal( ~vol, srv1 ) )total SE vol 2377 34.464 or worse, print( svytotal( ~vol + strata, srv1 ) ) total SE vol 2377.0 34.464 strataA 42.0 0.000 strataB 64.0 0.000 strataC 34.0 0.000 which reports the number of observations in each of the strata. I'm sure this is a RTFM question, but I just need a start. The size of each "plot" is 0.04 units (hectares) and I want to be able to quickly examine working up each sample with and without clusters (this is going to be part of a larger simulation study). I'm trying to not use SAS for this and hate to admit defeat. Thanks, Jeff.
James Reilly
2006-Feb-09 13:17 UTC
[R] getting strata/cluster level values with survey package?
Try the examples here: ?ftable.svystat On 8/02/2006 12:23 p.m., Jeff D. Hamann wrote:> First, I appoligise for the rooky question, but... > > I'm trying to obtain standard errors, confidence intervals, etc. from a > sample design and have been trouble getting the results for anything other > than the basic total or mean for the overall survey from the survey > package. > > For example, using the following dataset, > > strata,cluster,vol > A,1,18.58556192 > A,1,12.55175443 > A,1,21.65882438 > A,1,17.11172946 > A,1,15.41713348 > A,2,13.9344623 > A,2,17.13104821 > A,2,14.6806479 > A,2,14.68357291 > A,2,18.86017714 > A,2,20.67642515 > A,2,15.15295351 > A,2,13.82121102 > A,2,12.9110477 > A,2,14.83153677 > A,2,21.90772687 > A,3,18.69795427 > A,3,18.45636428 > A,3,15.77175793 > A,3,15.54715217 > A,3,20.31948393 > A,3,19.26391445 > A,3,15.54750775 > A,3,19.18724018 > A,4,12.89572151 > A,4,12.92047701 > A,4,12.64958757 > A,4,19.85888418 > A,4,19.64057669 > A,4,19.19188964 > A,4,18.81619298 > A,4,21.73670878 > A,5,15.99430802 > A,5,18.66666517 > A,5,21.80441654 > A,5,14.22081904 > A,5,16.01576433 > A,5,14.92497202 > A,5,17.95123218 > A,5,19.82027165 > A,5,19.35698273 > A,5,19.10826519 > B,6,13.40892677 > B,6,14.3956207 > B,6,13.82113391 > B,6,16.37338569 > B,6,19.70159575 > B,7,14.74334178 > B,7,16.55125245 > B,7,12.38329798 > B,7,18.16472408 > B,7,16.32938475 > B,7,16.06465494 > B,7,12.63086062 > B,7,14.46114813 > B,7,21.90134013 > B,7,13.81025827 > B,7,15.85805494 > B,7,20.18195326 > B,8,19.05120792 > B,8,12.83856639 > B,8,12.61360139 > B,8,21.30434314 > B,8,14.19960469 > B,8,17.38397826 > B,8,15.66477339 > B,8,22.07182834 > B,8,12.07487394 > B,8,20.36357359 > B,8,20.2543677 > B,9,14.44499362 > B,9,17.77235228 > B,9,13.01620902 > B,9,18.10976359 > B,10,18.22350661 > B,10,18.41504728 > B,10,17.94735486 > B,10,18.39173938 > B,10,14.21729704 > B,10,16.95753684 > B,10,21.11643087 > B,10,16.09688752 > B,10,19.54707452 > B,10,22.00450065 > B,10,15.15308873 > B,10,14.72488972 > B,10,17.65280737 > B,10,14.61615255 > B,10,12.89525607 > B,11,22.35831089 > B,11,18.0853187 > B,11,22.12815791 > B,11,17.74562214 > B,11,21.45724242 > B,11,20.57933779 > B,11,19.97397415 > B,11,16.34967424 > B,12,22.14385376 > B,12,17.82816113 > B,12,18.37056381 > B,12,16.13152759 > B,12,22.06764318 > B,12,12.80924472 > B,12,18.95522175 > B,13,20.40554286 > B,13,19.72951878 > C,14,15.51581 > C,14,15.4836358 > C,14,13.35882363 > C,14,13.16072916 > C,14,21.69168971 > C,14,19.09686303 > C,14,14.47450457 > C,14,12.04870424 > C,14,13.33096141 > C,14,17.38388981 > C,14,16.29015289 > C,14,16.32707754 > C,14,16.2784054 > C,15,15.0170597 > C,15,14.95767365 > C,15,15.20739614 > C,15,22.10458509 > C,15,12.3362457 > C,15,19.87895753 > C,15,18.8363682 > C,15,16.43738666 > C,15,12.84570744 > C,15,15.99869357 > C,15,14.42551321 > C,15,13.63489872 > C,15,15.67179885 > C,16,14.61700901 > C,16,14.64864676 > C,16,14.13014582 > C,16,21.7637441 > C,16,20.66825543 > C,16,17.05977818 > C,16,17.80118916 > C,16,15.16641698 > > where this is read into stand.data. When I use the following survey designs, > > srv1 <- svydesign(ids=~1, strata=~strata, data=stand.data ) > > or, > > srv1 <- svydesign(ids=~cluster, strata=~strata, data=stand.data ) > > with, > > print( svytotal( ~vol, srv1 ) ) > > I only obtain the total, > >> print( svytotal( ~vol, srv1 ) ) > total SE > vol 2377 34.464 > > or worse, > > print( svytotal( ~vol + strata, srv1 ) ) > total SE > vol 2377.0 34.464 > strataA 42.0 0.000 > strataB 64.0 0.000 > strataC 34.0 0.000 > > which reports the number of observations in each of the strata. I'm sure > this is a RTFM question, but I just need a start. The size of each "plot" > is 0.04 units (hectares) and I want to be able to quickly examine working > up each sample with and without clusters (this is going to be part of a > larger simulation study). > > I'm trying to not use SAS for this and hate to admit defeat. > > Thanks, > Jeff. > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html-- James Reilly Department of Statistics, University of Auckland Private Bag 92019, Auckland, New Zealand