On Wed, 2005-12-14 at 21:34 -0500, John Sorkin wrote:> I am trying to delete rows containing missing values from a
> groupeddata object. Several of the columns are character (sexChar,
> HAPI, rs2304785) the rest are numeric. For some reason I am excluding
> all rows with missing values. Your suggestions for corrections would
> be appreciated.
>
> This did not work
> GC2 <- GC[c("logtg" != NA & "ctime" != NA &
!is.na("sexChar") & !
> is.na("HAPI") & "logfirsttg" != NA &
"BMI" != NA & !is.na(GC$
> rs2304795)), ]
> nor did
> GC2 <- GC["logtg" != NA & "ctime" != NA &
!is.na("sexChar") & !
> is.na("HAPI") & "logfirsttg" != NA &
"BMI" != NA & !is.na(GC$
> rs2304795), ]
>
> John
John,
You cannot use:
Values != NA
and get the TRUE/FALSE results of the boolean comparison of Values that
are not equal to NA.
For example:
> a <- sample(c(NA, 1:5), 20, replace = TRUE)
> a
[1] 2 3 3 1 3 4 5 3 NA 4 3 2 1 2 2 NA 2 2 NA 1
> a != NA
[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
or
> a == NA
[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA is undefined, so by definition, any comparisons to NA, as above, will
be as well. Simply put:
> NA == NA
[1] NA # Note that this is not TRUE
That is why there is a specific function to be used, which you have in
some cases above. That is is.na().
> !is.na(a)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[12] TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
which then can be used as such:
> a[!is.na(a)]
[1] 2 3 3 1 3 4 5 3 4 3 2 1 2 2 2 2 1
In the case of a data frame (which a groupedData object contains), you
can use complete.cases() to access the rows that do not have missing
values. So, if your initial object is called GC, you should be able to
use:
GC2 <- GC[complete.cases(GC), ]
An alternative is to use na.omit() as follows:
GC2 <- na.omit(GC)
See ?complete.cases and ?na.omit for more information.
HTH,
Marc Schwartz