Hi, I'm having difficulty specifying contrasts for a within subjects factor with 3 levels. I can do it correctly for my factors with 2- levels, but i'm not getting the correct results for a 3-level factor. My design has 1 between subjects factor (gp) and 3 within subjects factors. Within factor "w" has 2 levels, within factor "x" has two factors, and within factor "y" has 3 factors. i first ran an ombibus F-test using aov. i then compared all of my contrasts to that output to determine if i was calculating the contrasts correctly. i first calculated the within factor w's main effect and interaction with the aov and then using a contrast: > summary(aov(effect ~ gp * w * x * y + Error(subj/(w+x+y)), data=both.uni)) Error: subj:w Df Sum Sq Mean Sq F value Pr(>F) w 1 1.3889 1.3889 1.1364 0.3465 gp:w 1 0.2222 0.2222 0.1818 0.6918 Residuals 4 4.8889 1.2222 ... with contrasts i got the same results using the following code: contr <- matrix(c( 1, 1, 1, 1, 1, 1,-1, -1, -1,-1,-1,-1,), ncol=1) taov <- aov(cbind ( w1x1y, w1x1y2, w1x1y3, w1x2y, w1x2y2, w1x2y3,w2x1y, w2x1y2, w2x1y3, w2x2y, w2x2y2, w2x2y3) %*% contr ~ gp, data = both.mul) summary(taov,intercept=T) now, things get a little more complicated for the three-level factor, 'y.' If my memory serves me correctly, i can achieve this by writing a contrast that compares level 1 with level3 and level 2 with level 3. is that correct? if so the code should look something like: contr <- matrix(c( 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, ), nrow=12, byrow=T) tmp<-manova(cbind( w1x1y, w1x1y2, w1x1y3, w1x2y, w1x2y2, w1x2y3, w2x1y, w2x1y2, w2x1y3,w2x2y, w2x2y2, w2x2y3) %*% contr ~ gp, data = both.mul) summary(tmp, test="Wilks", intercept=T) when i run this code, it gives me the incorrect degrees of freedom and a p value different from what i obtained in my omnibus anova. does anyone have an idea of where i went wrong? if access to my dataset is useful, i list it below. # set up matrix for control subjects cont.mat <- c (3,1,5,2,1,3,2,3,5,2,2,4,1,2,4,1,2,6,0,1,4,1,1,4,3,3,4,3,1,5,3,2,6,4,4,5 ,) nsubs_c <- length(cont.mat)/12 con.mat <- matrix(cont.mat, nsubs_c, 12, T) con.mul <- cbind.data.frame(subj=1:nsubs_c, conds=factor(rep(1,rep (nsubs_c,1))), con.mat) dimnames(con.mul)[[2]] <- c("subj","gp", "w1x1y", "w1x1y2", "w1x1y3", "w1x2y", "w1x2y2", "w1x2y3", "w2x1y", "w2x1y2", "w2x1y3", "w2x2y", "w2x2y2", "w2x2y3",) con.uni <- data.frame(effect = as.vector(con.mat), subj = factor(paste("s", rep(1:nsubs_c, 12), sep="")), gp = factor( paste("gp", rep(c(1), nsubs_c*12), sep="")), w = factor(paste("w", rep(c(1,2), c(nsubs_c*3*2,nsubs_c*3*2)), sep="")), x = factor( paste("x", rep(rep(c(1, 2), c(nsubs_c*3, nsubs_c*3)),2), sep="")), y = factor(paste("y", rep(rep(c(1:3), rep(c(nsubs_c),3)),4), sep="")), row.names = NULL) # set up matrix for patients pati.mat <- c (3,1,4,0,2,3,2,2,5,1,1,5,5,0,3,1,1,2,3,1,4,0,1,4,1,1,4,1,0,3,0,2,4,2,1,4 ,) nsubs_p <- length(pati.mat)/12 pat.mat <- matrix(pati.mat, nsubs_p, 12, T) pat.mul <- cbind.data.frame(subj=1:nsubs_p, conds=factor(rep(2,rep (nsubs_p,1))), pat.mat) dimnames(pat.mul)[[2]] <- c("subj","gp", "w1x1y", "w1x1y2", "w1x1y3", "w1x2y", "w1x2y2", "w1x2y3", "w2x1y", "w2x1y2", "w2x1y3", "w2x2y", "w2x2y2", "w2x2y3",) pat.uni <- data.frame(effect = as.vector(pat.mat), subj = factor(paste("s", rep((nsubs_c+1):(nsubs_c+nsubs_p), 12), sep="")), gp = factor( paste("gp", rep(c(2), nsubs_p*12), sep="")), w = factor(paste("w", rep(c(1,2), c(nsubs_p*3*2,nsubs_p*3*2)), sep="")), x = factor( paste("x", rep(rep(c(1, 2), c(nsubs_p*3, nsubs_p*3)),2), sep="")), y = factor(paste("y", rep(rep(c(1:3), rep(c(nsubs_p),3)),4), sep="")), row.names = NULL) both.uni <- rbind(con.uni, pat.uni) # univariate file containing everone's data both.mul <- rbind(con.mul, pat.mul) # multivariate file containing everone's data ############ 1: give me the whole anova ########## summary(aov(effect ~ gp * w * x * y + Error(subj/(w+x+y)), data=both.uni)) ############ 2: give me the w main effect and interaction with gp interaction ############ contr <- matrix(c( -1, -1, -1, -1,-1,-1, 1, 1, 1, 1, 1, 1, ), ncol=1) taov <- aov(cbind ( w1x1y, w1x1y2, w1x1y3, w1x2y, w1x2y2, w1x2y3, w2x1y, w2x1y2, w2x1y3, w2x2y, w2x2y2, w2x2y3) %*% contr ~ gp, data = both.mul) summary(taov,intercept=T) ############ 3: give me the y main effect and interaction with gp interaction ############ contr <- matrix(c( 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, 0, 0, 1, -1, -1, ), nrow=12, byrow=T) tmp<-manova(cbind( w1x1y, w1x1y2, w1x1y3, w1x2y, w1x2y2, w1x2y3, w2x1y, w2x1y2, w2x1y3, w2x2y, w2x2y2, w2x2y3) %*% contr ~ gp, data = both.mul) summary(tmp, test="Wilks", intercept=T)