According to the algorithm, what is divided by the number of slices is the range of the response variable such that each slice has approximately the same number of cases. Maybe the range of your response is very short or only takes a small number of values. I did a small simulation with normal data and what I got is the following: library(dr) X <- matrix(rnorm(3500*14),ncol=14) #Thinking you have 14 predictors. y <- rnorm(3500,mean=8,sd=2) msir <- dr(y~X,method="sir",nslices=8) summary(msir) Call: dr(formula = y ~ X, method = "sir", nslices = 8) Method: sir with 8 slices, n = 3500, using weights. Slice Sizes: 438 438 438 438 437 437 437 437 Eigenvectors: Dir1 Dir2 Dir3 Dir4 X1 0.2017030 -0.04039 0.192561 0.415955 X2 -0.0001632 -0.18160 -0.084247 0.544218 X3 0.1018999 0.04044 -0.214947 -0.497072 X4 -0.2591932 0.28825 -0.126928 -0.030583 X5 -0.3970003 0.27109 -0.194828 -0.041809 X6 0.4572450 -0.26988 -0.404183 -0.162565 X7 -0.0044665 0.51297 0.132349 -0.206052 X8 -0.0143563 0.31186 0.005307 0.337652 X9 0.4355999 0.37507 0.341414 0.006436 X10 0.0040755 0.03487 -0.441170 0.073009 X11 -0.0012413 -0.32851 0.092096 -0.102832 X12 0.3767253 0.30895 -0.412124 0.202124 X13 -0.3927512 -0.03363 -0.367138 0.149092 X14 0.1700059 0.16602 -0.224347 0.138282 Dir1 Dir2 Dir3 Dir4 Eigenvalues 0.01195 0.006903 0.005031 0.003430 R^2(OLS|dr) 0.10372 0.641660 0.848887 0.878968 Asymp. Chi-square tests for dimension: Stat df p-value 0D vs >= 1D 106.69 98 0.2577 1D vs >= 2D 64.87 78 0.8560 2D vs >= 3D 40.71 60 0.9734 3D vs >= 4D 23.10 44 0.9960 Please let me know if you continue having problems on this. Jorge de la Vega -----Mensaje original----- De: Jessica Higgs [mailto:jlh599 at psu.edu] Enviado el: Viernes, 22 de Abril de 2005 05:29 PM Para: De la Vega G??ngora Jorge Asunto: RE: [R] dr () I have approximately 3500 observations. Even when I specify 8 slices, it does five with the first slice being significantly larger than the other 4. At 05:16 PM 4/22/2005 -0500, you wrote:>I think the method uses as default the number of slices such that each >slice has approximately the same number of data. How many observations >do you have? > > > >Jorge de la Vega > > >-----Mensaje original----- >De: r-help-bounces at stat.math.ethz.ch >[mailto:r-help-bounces at stat.math.ethz.ch] En nombre de Jessica Higgs >Enviado el: Viernes, 22 de Abril de 2005 01:48 PM >Para: R-help at stat.math.ethz.ch >Asunto: [R] dr () > > >Hi all-- > >A quick question about the dr () function. I am using this function to >reduce the dimensions of a data set I have that involves 14 predictor >variables and one predictant or response. The goal is to discover which >variables play the most important role in determining the response and, >thus, to reduce the variables. I would like to use the sliced inverse >regression method (SIR) within this function but each time I specify 8 >slices, it only performs 5 slices. Any suggestions/thoughts? > >THanks, >Jessica > >______________________________________________ >R-help at stat.math.ethz.ch mailing list >https://stat.ethz.ch/mailman/listinfo/r-help >PLEASE do read the posting guide! >http://www.R-project.org/posting-guide.html