Ing. Michael Rost
2003-Oct-27 13:47 UTC
[R] Bioassays Yielding concentration-Mortality data
Dear all, I'm trying reproduce an example of bioassays Yielding Concentration-Mortality Data particularly control - adjustment model from book Bioassay of Entomopathogenic Microbes and Nematodes chapter 7 with R. I used glm with family=binomial and link=probit, but I do not know how to implement parameter gamma (control mortality - mortality of the untreated control insect in this exaple) into model formula. Model in book: pi(x)=gamma+(1-gamma)F(alpha+beta log(x)) F....cumulative probability distribution function data: x=concentration n=number of insect at each run y=number of death among n in given batch run at given concentration Xmat<-data.frame(x=rep(c(0.01,0.1,1,10,100),2),n=rep(100,10),y=c(19,20,21,45,80,25,25,27,56,91)) Reults from book (obtained from SAS) are intercept -1.6597 , beta =0.5586, control mortality --- gamma =0.2172 Thanks for any advice. Michael --- Odchozí zpráva neobsahuje viry. Zkontrolováno antivirovým systémem AVG (http://www.grisoft.cz). Verze: 6.0.530 / Virová báze: 325 - datum vydání: 22.10.2003 [[alternative HTML version deleted]]
On Mon, 27 Oct 2003, Ing. Michael Rost wrote:> Dear all, I'm trying reproduce an example of bioassays Yielding > Concentration-Mortality Data particularly control - adjustment model > from book Bioassay of Entomopathogenic Microbes and Nematodes chapter 7 > with R. > > I used glm with family=binomial and link=probit, but I do not know how > to implement parameter gamma (control mortality - mortality of the > untreated control insect in this exaple) into model formula. > > Model in book: > pi(x)=gamma+(1-gamma)F(alpha+beta log(x))This is a generalised linear model but isn't one of the built-in link functions. You would have to modify one of the glm family objects to use this link function, changing the components linkfun: the link function linkinv: the inverse of the link function mu.eta: the derivative of the inverse of the link function As a starting point you probably want the family object returned by binomial(link=probit). -thomas> F....cumulative probability distribution function > data: > x=concentration > n=number of insect at each run > y=number of death among n in given batch run at given concentration > > > Xmat<-data.frame(x=rep(c(0.01,0.1,1,10,100),2),n=rep(100,10),y=c(19,20,21,45,80,25,25,27,56,91)) > > > > Reults from book (obtained from SAS) are > > intercept -1.6597 , beta =0.5586, control mortality --- gamma =0.2172 > > Thanks for any advice. > Michael > > --- > Odchozí zpráva neobsahuje viry. > Zkontrolováno antivirovým systémem AVG (http://www.grisoft.cz). > Verze: 6.0.530 / Virová báze: 325 - datum vydání: 22.10.2003 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help >Thomas Lumley Assoc. Professor, Biostatistics tlumley at u.washington.edu University of Washington, Seattle