What about the obvious:
tstDf <- data.frame(x=1:9, y=rnorm(9), w=1:9)
fit <- lm(y~x, tstDf, weights=w)
pred <- predict(fit, se.fit=T)
pred$fit + outer(pred$se.fit, c(-2, 2))
"predict.lm" might need weights for interval="prediction"
with newdata,
but not with interval="confidence" ... or am I missing something?
hth. spencer graves
Brown, David wrote:> Is there an easy way to compute confidence intervals (or prediction
> intervals) for gls models?
>
> E.g. for standard linear models, with the predict.lm function, we can set
> interval="confidence" , level = 0.95 and
type="response".
>
> Thanks in advance!
>
> [[alternate HTML version deleted]]
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help