Many thanks to Martin Maechler and Jim Garrett.
They proposed almost the same algorithm to solve the problem (how to draw an
interpolating curve through a set of points).
Martin Maechler wrote a nice function. A particular problem arises if the shape
must be a closed shape.
So I added some elements to obtain two functions, one for an open shape, one for
a closed. They can be used as an alternative of lines() and polygon(): sometimes
the angles can be seen as artificial, it is a matter of visual semantics.
These functions are not very smart, many improvements are surely possible.
****************************************************************************************************
spllines <- function(x, y = NULL, n = 20, type="l",
col=par("col"), lty=par("lty"), ...  ){
  ## Purpose: Interpolating spline *curve* (not function)
  ##          for an open shape (missing values not accepted)
  ## ---------------------------------------------------------------
  ## Arguments: (almost) the same as for lines()
  ## ---------------------------------------------------------------
  ## Author: Martin Maechler, Date:  6 Dec 2002, 12:34
   xy <- cbind(x,y)   
   nP <- length(xy[,1])
   if((nP < 3) || (is.na(any(xy[,1])))) 
       return(list(x=numeric(0), y=numeric(0)))
  
  ## else :
   
   nP <- length(xy[,1])
   z <- n*(nP-1)
   i <- 1:nP
   Sx <- splinefun(i, xy[,1], method = "natural")
   Sy <- splinefun(i, xy[,2], method = "natural")
   ti <- seq(1, nP, length = z)
   opspl <- cbind(x = Sx(ti), y = Sy(ti))
   
   lines(opspl, type=type, col=col, lty=lty, ...  )
}
****************************************************************************
splpolygon <- function(x, y = NULL, n = 20, density=NULL, angle=45,
border=NULL, col=NA, lty=NULL, xpd=NULL, ...  ){
  ## Purpose: Interpolating spline *curve* (not function)
  ##          for a closed shape (missing values not accepted)
  ## ---------------------------------------------------------------
  ## Arguments: (almost) the same as for polygon()
  ## ---------------------------------------------------------------
  ## Author: Martin Maechler, Date:  6 Dec 2002, 12:34
   xy <- cbind(x,y)   
   nP <- length(xy[,1])
   if((nP < 3) || (is.na(any(xy[,1])))) 
       return(list(x=numeric(0), y=numeric(0)))
  
  ## else :
   if(xy[1,] == xy[nP,]) xy <- rbind(xy[(nP-1),],xy[nP,],xy,xy[1,],xy[2,])
     else xy <- rbind(xy[(nP-2),],xy[(nP-1),],xy[nP,],xy,xy[1,],xy[2,])
   
   nP <- length(xy[,1])
   z <- n*(nP-1)
   i <- 1:nP
   Sx <- splinefun(i, xy[,1], method = "natural")
   Sy <- splinefun(i, xy[,2], method = "natural")
   ti <- seq(1, nP, length = z)
   clspl <- cbind(x = Sx(ti), y = Sy(ti))
   clspl <- clspl[((n*2)+1):(z-(n*2)),]
   
   polygon(clspl, density=density, angle=angle, border=border, col=col, lty=lty,
xpd=xpd, ...)
}
**************************************************************
Alain GUERREAU  CNRS-Paris
	[[alternate HTML version deleted]]