Roberta Pereira Niquini
2008-Dec-12 19:23 UTC
[R] prevalence ratio and confidence intervals
Hi everybody, I would like to estimate prevalence ratio and confidence intervals. I tried to do a log-binomial regression, but there was a failure of convergence. Now, I would like to learn how to do a poisson regression with robust variance. I am trying to estimate coefficients with poisson regression and then get standard errors that are adjusted for heteroskedasticity. glm22<- svyglm(y~x1+x2+x3+offset(log(x4)), data = banco, family = poisson, design= design_tarv) # Y has a binomial distribution (0/1) # X1, X2, X3 e X4 are categorical variables. #I am using the library(survey) because it is an analysis of Complex Sample Survey Data . summary(glm22) Call: svyglm(y~x1+x2+x3+ offset(log(x4)),data = banco, family = poisson, design = design_tarv) Survey design: svydesign(ids = ~conglomerado, strata = ~estrato, data = banco, weights = ~peso) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -5.61224 0.07223 -77.699 < 2e-16 *** x1 0.33847 0.07428 4.557 0.000155 *** x2 0.17745 0.07059 2.514 0.019765 * x3 0.33508 0.09447 3.547 0.001808 ** x4 0.24382 0.08808 2.768 0.011217 * --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 (Dispersion parameter for poisson family taken to be 0.7535822) Number of Fisher Scoring iterations: 5 # Using family=quasipoisson, I found the same values. library(sandwich) vcovHAC(glm22) (Intercept) x1 x2 x3 x4 (Intercept)1.060857e-12-1.306035e-13-5.139155e-13 -9.788354e-13 -3.428080e-13 x1 -1.306035e-13 7.237868e-13 -3.263182e-13 -1.620593e-13 1.704392e-13 x2 -5.139155e-13 -3.263182e-13 1.250564e-12 7.207572e-13 -9.350062e-13 x3 -9.788354e-13 -1.620593e-13 7.207572e-13 1.707176e-12 -2.244859e-13 x4 -3.428080e-13 1.704392e-13 -9.350062e-13 -2.244859e-13 2.031640e-12 sqrt(diag(vcovHAC(glm22))) (Intercept) x1 x2 x3 x4 1.029979e-06 8.507566e-07 1.118286e-06 1.306589e-06 1.425356e-06 I think these standards errors are very small. Is this the correct form to do poisson regression with robust variance? Thank you for the help, Roberta.