I work with Windows, R 2.4.1. I'm a beginner with R! After doing a Discriminant Function Analysis, I am trying to run manova to get a measure of significance of my lda results. I want to predict groups 1 through 4 using 78 variables (bad group/var ratio, I know, but I'm just exploring the possibilities right now). I've tried with a test matrix and I get my results fine, so I think it might have something to do with the matrix I'm using (hence, the sample of my matrix I show below). My matrix, called disperser.mx in my code, looks like: disperser P5.38 P6.45 P6.55 P6.63 P7.12 P7.42 P8.10 P8.30 P8.88 P9.09 P9.30 3 0.00 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 131.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 72.65 103.26 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.88 0.48 0.89 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 5.41 20.62 0.00 8.13 8.87 8.27 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 133.24 0.00 0.73 0.00 0.00 1.34 2.13 0.00 0.00 0.00 1 0.00 11.08 3.16 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 0.82 0.00 0.00 0.00 4.79 0.00 0.00 33.69 0.00 0.00 11.44 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 1.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 6.89 0.00 0.00 0.00 0.00 0.00 2 7.26 8.16 1.50 0.00 1.97 1.28 0.00 4.08 0.00 0.00 1.16 4 0.00 0.00 0.00 0.00 0.00 3.13 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.00 1.48 0.22 0.00 0.00 0.00 1.80 0.00 0.66 0.47 0.47 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 4.78 0.00 0.00 0.00 0.00 0.00 0.00 ...with a lot more variables. The code I am writing to get a manova is: ##first, the code for the discriminant function, just in case it has something to do with the error I get later## disperser.mx$disperser<- as.factor (disperser.mx$disperser) disperser.df <- lda(disperser~., data=disperser.mx) predict(disperser.df) attach(disperser.mx) table(disperser, predict(disperser.df)$class) ## so far so good. I get my discriminant analysis fine volatileVar <- disperser.mx[c(2:79)] ## these are all the variables that I want to use summary (manova(as.matrix(volatileVar)~disperser.mx$disperser), test='Wilks') ## here is where I get an error that says "Error in summary.manova(manova(as.matrix(volatileVar) ~ disperser.mx$disperser), : residuals have rank 23 < 78" I would appreciate any help you can offer! Silvia. -- View this message in context: http://www.nabble.com/error-in-manova-tf4489610.html#a12804209 Sent from the R help mailing list archive at Nabble.com.