Consider the following output [R2.2.0; Windows XP]
> set.seed(160706)
> X <- matrix(rnorm(40),nrow=10,ncol=4)
> Xpc <- princomp(X,cor=FALSE)
> summary(Xpc,loadings=TRUE, cutoff=0)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.2268300 0.9690865 0.7918504 0.55295970
Proportion of Variance 0.4456907 0.2780929 0.1856740 0.09054235
Cumulative Proportion 0.4456907 0.7237836 0.9094576 1.00000000
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
[1,] -0.405 -0.624 0.466 0.479
[2,] -0.199 -0.636 -0.346 -0.660
[3,] 0.884 -0.443 0.023 0.148
[4,] 0.122 0.099 0.814 -0.559
> eigen(var(X))
$values
[1] 1.6723465 1.0434763 0.6966967 0.3397382
$vectors
[,1] [,2] [,3] [,4]
[1,] -0.4048158 0.6240510 0.46563382 0.4794473
[2,] -0.1994853 0.6361009 -0.34634256 -0.6600213
[3,] 0.8839775 0.4429553 0.02261302 0.1478618
[4,] 0.1221215 -0.0986234 0.81407655 -0.5591414
I would have expected the princomp component standard deviations to be
the square roots of the eigen() $values and they clearly are not.
Murray Jorgensen
--
Dr Murray Jorgensen http://www.stats.waikato.ac.nz/Staff/maj.html
Department of Statistics, University of Waikato, Hamilton, New Zealand
Email: maj at waikato.ac.nz Fax 7 838 4155
Phone +64 7 838 4773 wk Home +64 7 825 0441 Mobile 021 1395 862