Hi R-masters! I try using package gRbase for fit a Hierarchical log-linear models and show as graphical model. I using data about patients of my Hospital (file sm.csv) and my script is : setwd("F:/INCL/TURA") dados<-read.csv("sm.csv") attach(dados) tab1<-table(obesidade,HAS,TG,DM,HDL) require(gRbase) dados.g <- as.gmData(tab1) m2 <-hllm(~obesidade*HAS*TG*DM*HDL,dados.g) m2.f <- fit(m2,engine="loglm") Well my doubt is why dynamic.Graph(m2) is the same model of dynamic.Graph(m2.f) Where I wrong? Thanks in advance Bernardo Rangel Tura, MD, MSc National Institute of Cardiology Laranjeiras Rio de Janeiro Brazil -------------- next part -------------- obesidade,HAS,TG,DM,HDL,SM N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,N,N S,S,S,S,S,S S,S,S,S,S,S N,S,N,S,S,N S,S,S,N,S,S N,S,N,S,S,N N,N,N,N,S,N N,N,N,S,S,N N,S,N,S,N,N N,N,S,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,N,S,N S,S,N,S,S,S N,S,N,N,S,N N,S,S,S,S,N S,S,N,S,N,S N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,N,N,N,N N,S,N,N,S,N S,S,N,S,N,S S,S,N,S,N,S N,N,S,S,N,N N,S,S,N,S,N N,N,N,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,N,S,N,N N,S,N,S,S,N N,S,N,S,N,N S,S,S,S,N,S N,S,N,S,S,N N,S,N,S,N,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,N,N S,S,N,S,N,S S,S,S,S,S,S S,S,S,S,N,S N,N,N,N,S,N N,S,N,N,S,N N,S,N,S,N,N N,N,S,S,S,N S,S,N,S,S,S N,S,S,S,N,N N,N,S,S,N,N N,N,S,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N S,S,N,N,S,S N,S,N,S,S,N N,N,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,N,S,S,N N,S,N,S,S,N S,S,S,S,S,S N,S,N,N,S,N N,S,N,S,N,N N,S,S,S,S,N N,N,N,N,S,N N,S,S,S,S,N N,S,N,S,N,N N,S,N,S,S,N N,S,S,N,S,N S,S,S,S,S,S N,S,S,S,S,N N,S,S,S,S,N N,S,S,S,N,N N,S,S,N,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,N,S,N N,N,N,N,N,N N,S,N,S,N,N N,S,N,S,N,N S,S,N,N,S,S N,N,N,N,N,N S,S,N,S,S,S N,S,S,S,N,N N,S,N,S,S,N N,S,N,N,S,N N,N,N,S,S,N N,N,N,N,S,N N,S,N,S,N,N N,S,N,N,N,N N,N,S,S,N,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,N,S,N S,S,S,S,S,S N,S,N,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,N,N,S,N N,S,N,S,N,N N,S,N,S,S,N N,S,N,S,N,N N,S,N,N,S,N N,S,N,S,S,N S,S,N,N,S,S N,S,S,S,N,N N,S,N,N,S,N N,S,S,S,S,N N,S,N,S,S,N S,S,S,S,S,S N,S,N,N,S,N N,S,N,N,S,N S,S,N,S,S,S N,S,N,S,S,N N,S,S,S,N,N N,S,N,S,N,N N,S,N,N,N,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,N,N,S,S,N N,S,N,N,N,N N,S,N,S,S,N N,S,N,N,S,N S,S,N,S,S,S N,S,N,S,S,N N,N,S,S,S,N N,S,N,S,S,N N,S,S,S,S,N S,S,N,S,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,S,S,S,N S,S,S,S,S,S S,S,S,S,S,S N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N S,S,S,S,S,S N,S,N,S,S,N N,N,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,S,S,N,N N,N,N,S,S,N N,S,S,S,S,N N,S,S,N,S,N N,S,N,S,N,N S,S,N,S,S,S N,S,N,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N S,N,S,S,S,S N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,N,N,S,N N,S,S,S,S,N N,N,N,N,N,N N,S,N,S,S,N N,S,S,S,N,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,N,S,N S,N,N,S,S,S S,S,S,N,N,S S,S,S,S,S,S N,S,N,N,S,N N,N,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,N,N N,N,N,S,S,N S,S,N,S,S,S N,S,S,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,S,S,S,N N,N,N,S,S,N S,N,S,N,N,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N N,N,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,N,N,S,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,N,S,S,N S,S,N,S,N,S N,N,N,S,S,N N,N,N,N,S,N S,S,N,S,S,S N,N,S,S,S,N N,N,S,S,N,N N,N,N,S,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,S,S,N,N N,N,S,S,S,N N,N,N,N,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N S,S,N,S,S,S S,S,S,N,S,S N,S,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,N,N,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,N,N,N,S,N N,N,N,N,S,N N,S,N,N,S,N S,S,N,S,S,S N,N,N,N,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,N,N,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,S,S,N,S,N N,S,S,N,S,N N,N,S,S,S,N N,S,S,S,S,N N,S,N,S,N,N N,S,N,S,S,N N,N,S,S,S,N N,S,N,S,S,N N,S,N,N,N,N N,N,S,N,S,N N,S,N,S,S,N N,S,S,S,S,N S,S,N,S,S,S S,S,N,S,N,S N,S,S,N,N,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N S,S,N,N,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,N,S,S,S,N N,S,N,S,N,N N,S,N,N,S,N N,S,N,S,N,N N,S,S,S,S,N S,S,S,S,S,S N,S,S,S,S,N N,S,S,S,S,N N,S,S,S,S,N S,S,N,N,S,S N,S,N,S,S,N N,S,S,S,N,N N,S,N,N,S,N N,S,N,S,S,N S,S,S,S,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,N,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,S,S,S,N N,S,N,S,N,N N,N,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N S,S,N,N,S,S N,S,N,S,S,N N,N,N,S,S,N S,S,S,S,S,S N,S,N,N,S,N N,S,N,S,N,N N,N,N,S,N,N N,N,N,S,S,N N,S,S,N,S,N N,S,S,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N S,S,S,S,S,S N,S,S,N,S,N N,S,S,S,N,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,S,N,S,N N,S,S,N,N,N N,S,S,N,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N S,S,N,S,S,S S,S,N,S,N,S N,S,N,N,N,N N,N,S,S,N,N N,N,N,S,N,N N,S,N,S,S,N N,N,N,N,S,N N,S,N,N,S,N S,S,S,S,S,S N,S,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,N,N,N,N N,S,N,S,S,N N,N,N,N,S,N N,S,N,N,S,N S,S,N,S,S,S S,S,S,N,S,S N,S,N,N,S,N S,S,S,S,N,S N,S,N,S,S,N S,S,N,S,S,S N,S,S,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,N,N,N,N N,S,N,N,N,N S,N,N,N,S,N N,S,N,S,N,N N,N,S,N,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,N,N,N S,S,N,S,S,S N,S,N,N,S,N N,S,N,N,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,S,S,N N,N,S,S,N,N N,S,N,S,S,N N,S,S,N,S,N N,S,N,N,S,N N,S,S,N,N,N N,S,N,N,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,N,N,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N S,S,N,S,S,S N,S,S,N,N,N N,S,N,N,N,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,S,S,N,N S,S,S,S,S,S S,S,N,S,S,S N,S,N,S,S,N N,S,N,S,S,N N,S,S,N,S,N N,S,S,N,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,S,N,N N,S,S,N,N,N N,S,N,S,S,N N,S,N,N,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,N,S,N N,S,S,S,N,N N,S,N,N,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,S,S,S,N S,S,N,S,S,S N,S,S,S,S,N N,S,S,S,S,N N,S,S,S,S,N N,S,N,S,N,N N,S,N,N,S,N N,S,N,N,S,N S,S,N,S,S,S N,S,N,N,S,N N,S,S,S,S,N N,S,N,S,S,N N,S,N,S,S,N N,S,N,N,S,N N,S,N,S,S,N