I'm having hard time understanding the computation of degrees of freedom when runing nlme () on the following model: > formula(my data.gd) dLt ~ Lt | ID TasavB<- function(Lt, Linf, K) (K*(Linf-Lt)) my model.nlme <- nlme (dLt ~ TasavB(Lt, Linf, K), data = my data.gd, fixed = list(Linf ~ 1, K ~ 1), start = list(fixed = c(70, 0.4)), na.action= na.include, naPattern = ~!is.na(dLt)) > summary(my model.nlme) Nonlinear mixed-effects model fit by maximum likelihood Model: dLt ~ TasavB(Lt, Linf, K) Data: my data.gd AIC BIC logLik 13015.63 13051.57 -6501.814 Random effects: Formula: list(Linf ~ 1 , K ~ 1 ) Level: ID Structure: General positive-definite StdDev Corr Linf 7.3625291 Linf K 0.0845886 -0.656 Residual 1.6967358 Fixed effects: list(Linf + K ~ 1) Value Std.Error DF t-value p-value Linf 69.32748 0.4187314 402 165.5655 <.0001 K 0.31424 0.0047690 2549 65.8917 <.0001 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -3.98674 -0.5338083 -0.02783649 0.5261591 4.750609 Number of Observations: 2952 Number of Groups: 403 Why are the DF of Linf and K different? I would apreciate if you could point me to a reference. Lic. Gabriela Escati Pe侎aloza Biolog來a y Manejo de Recursos Acu佱ticos Centro Nacional Patag侒nico(CENPAT). CONICET Bvd. Brown s/n伜. (U9120ACV)Pto. Madryn Chubut Argentina Tel: 54-2965/451301/451024/451375/45401 (Int:277) Fax: 54-29657451543 --------------------------------- 1GB gratis, Antivirus y Antispam Correo Yahoo!, el mejor correo web del mundo Abr來 tu cuenta aqu來 [[alternative HTML version deleted]]