Formula: Memory Index called delta?in Parzen(1983); see pdf attachment p.536 ? Code: ? ########################################################################## # I am using a simulated long memories time series X1 of length 2000;??? # # I actually used d=.25 for AFRIMA (0,.25,0)???????????????????????????? # # and I am trying to estimate d through the memory index discussed in??? # # Parzen(1983) on p.536 . I am in need of an assessment of my code for?? # # the Parzen window as well as the choice of k and n. in my code I used? # # k to be 999 and n to be 2000. I am not confortable with the memory???? # #? index estimator and I will appreciate some help on the the code.????? # #?????????????????????????? Thank you!?????????????????????????????????? # ########################################################################## ? Pt <- acf(X1,2000) n <- length(X1) vv <- 1:(n-1) T <- 2000 MT <- T/2 MT2 <- MT%/%2 ## Parzen window formula on p.536 M_vT <- KK <- as.numeric(0) M_vT = vv/MT for (v in vv) { ??????? K[v] <- if (v <= MT2) ??????????? 1 - 6 * M_vT[v]^2 * (1 - M_vT[v]) ??????? else if ( v <= MT) ??????????? 2 * (1 - M_vT[v])^3 ??????? else 0 ??? } ## Non-parametric kernel spectral density estimator formula on p.536 ?p? = Pt$acf ?P = g = 0 ?for (v in 1:999) { ?g = g + (K[v]*p[v]) ?P[v] = g ?} w? <- seq(.005, 1, by = .005) i.c <- sqrt(as.complex(-1)) g.w <- 0 f.w <- function(w){ ?for (v in 1:999) { ?g.w = g.w+ P[v]*exp(-2*pi*i.c*w*v) ????} ?g.w ?} # f.w(.015) for w=.015 for instance ## memory index delta formula on p.536 g.d = 0 j = 1:999 j1 = j/n j2 = 1000/n f1 = f.w(j1) f2 = f.w(j2) delta = 0 deltak = 0 for (i in 1:999){? ?g.d = g.d + (log(f1[i]) - log(f2)) ???} ??delta = g.d ? ?deltak = delta/999 -------------- next part -------------- A non-text attachment was scrubbed... Name: Parzen(1983).pdf Type: application/pdf Size: 1132008 bytes Desc: not available URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20110303/b9319cbb/attachment-0001.pdf>