In specifying a CFA model using the sem package, I got the following warning message: In sem.default(ram = ram, S = S, N = N, param.names = pars, var.names vars, : Could not compute QR decomposition of Hessian. Optimization probably did not converge. This is the complete input (including data import): ---------------------------------------------------------------------------- - DS read.table("http://www.beltz.de/fileadmin/beltz/downloads/OnlinematerialienP VU/Statistik_und_Forschungsmethoden/Daten_kap23.dat", sep="", header = F) attach(DS) mycov = cov(DS) my.model <- specify.model() eta1 -> V1, NA, 1 eta1 -> V2, lam12, NA eta1 -> V3, lam13, NA eta1 -> V4, lam14, NA eta1 -> V5, lam15, NA eta1 -> V6, lam16, NA eta2 -> V4, NA, 1 eta2 -> V5, lam52, NA eta2 -> V6, lam62, NA V1 <-> V1, e1, NA V2 <-> V2, e2, NA V3 <-> V3, e3, NA V4 <-> V4, e4, NA V5 <-> V5, e5, NA V6 <-> V6, e6, NA eta1 <-> eta1, var.eta1, NA eta2 <-> eta2, var.eta2, NA my.sem <- sem(my.model, mycov, nrow(DS), debug=TRUE) ---------------------------------------------------------------------------- - The problem should converge easily and does so in Mplus. Also, it converges if the correlation matrix instead of the variance-covariance matrix is used and gives the correct standardized coefficients. Any suggestions why it does not work with the covariance matrix in my example? [[alternative HTML version deleted]]