hi glen,
i need conf.intervals for blocked data, as described in the first place.
i've learned in the meantime, that the boot() function can handle this.
i had to formulate the function for the boot command,
put "sites" to the strata argument and resample from each subsetted
level of
the factor "stage".
with boot.ci() i then yielded the boot ci's for each stage.
hi glen,
i need conf.intervals for blocked data, as described in the first place.
i've learned in the meantime, that the boot() function can handle this.
i needed to formulate the function for the boot command,
put "sites" to the strata argument and to resample from each subsetted
level
of the factor "stage".
with boot.ci() i then yielded the boot ci's for each stage.
here's the worked example, for anyone who is interested:
#######################################################################
#my data:
#######################################################################
sim<-data.frame(list(structure(list(stage = structure(c(1L, 1L, 1L, 1L, 1L,
1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L), .Label = c("A", "B", "C", "D"),
class = "factor"), site structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 6L, 6L,
6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L,
10L, 10L, 11L, 11L, 12L, 12L, 12L, 13L, 13L, 13L, 14L, 14L, 14L,
14L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 18L,
18L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L,
22L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 25L, 25L,
25L, 25L, 26L, 26L, 26L, 26L, 27L, 27L, 27L, 27L, 28L, 28L, 28L,
28L, 29L, 29L, 29L, 30L, 30L, 30L, 30L, 31L, 31L, 32L, 32L, 32L,
32L, 33L, 33L, 33L, 33L, 34L, 34L, 34L, 34L, 35L, 35L, 35L, 35L,
36L, 36L, 36L, 36L, 37L, 37L, 38L, 38L, 38L, 38L, 39L, 39L, 39L
), .Label = c("A11", "A12", "A14",
"A15", "A16", "A17", "A18",
"A19", "A20", "A5", "A7",
"A8", "B1", "B12", "B13",
"B14", "B15",
"B17", "B18", "B2", "B4",
"B7", "B8", "B9", "C1", "C10",
"C11",
"C15", "C17", "C18", "C19",
"C2", "C20", "C3", "C4", "C6",
"D1",
"D4", "D7"), class = "factor"), MH.Index =
c(0.392156863, 0.602434077,
0.576923077, 0.647482014, 0.989010989, 0.857142857, 1, 1, 1,
0, 1, 0.378378378, 0.839087948, 0.252915554, 1, 0.22556391, 0.510366826,
0.476190476, 0.555819477, 0.961538462, 0.666666667, 0.089285714,
0.923076923, 0.571428571, 0, 0.923076923, 0.617647059, 0.599423631,
0, 0.727272727, 0.998112812, 0, 0, 0, 1, 0.565656566, 0.75, 0.923076923,
0.654545455, 0.14084507, 0.617647059, 0.315789474, 0.179347826,
0.583468021, 0.165525114, 0.817438692, 0.455551457, 0.49548886,
0.556127703, 0.707431246, 0.506757551, 0.689655172, 0.241433511,
0.379232506, 0.241935484, 0, 0.30848329, 0.530973451, 0.148148148,
0, 0.976744186, 0.550218341, 0.542168675, 0.769230769, 0.153310105,
0, 0, 0.380569406, 0.742174733, 0.222222222, 0.046925432, 0,
0.068076328, 0.772727273, 0.830039526, 0.503458415, 0.863910822,
0.39401263, 0.081818182, 0.368421053, 0.088607595, 0, 0.575499851,
0.605657238, 0.714854232, 0.855881172, 0.815689401, 0.552207228,
0.81708081, 0.583228133, 0.334466349, 0.259477365, 0.194711538,
0.278916707, 0.636304805, 0.593715432, 0.661016949, 0.626865672,
0.420219245, 0.453535143, 0.471243706, 0.462427746, 0.56980057,
0.453821155, 0.052828527, 0.926829268, 0.51988266, 0.472200264,
0.351219512, 0.290030211, 0.765258974, 0.564894108, 0.789699571,
0.863378215, 0.525181559, 0.803061458, 0.260164645, 0.477265792,
0.265889379, 0.317791411, 0.107623318, 0.279181709, 0.471953363,
0.463724265, 0.241966696, 0.403647213, 0.693087992, 0.494259925,
0.68904453, 0.39329147, 0.498161213, 0.376225983, 0.407001046,
0.825016633, 0.718991658, 0.662995912)), .Names = c("stage",
"site", "MH.Index"), class = "data.frame",
row.names = c(NA,
-136L))))
#######################################################################
#my code:
#######################################################################
library(boot)
library(Hmisc)
####function:
mean.fun <- function(x, index){mean(x[index])}
X<-"A"
###the mean:
mean.fun(sim$MH.Index[sim$stage==X])
###the boot sample and the ci's:
boot<-boot(sim$MH.Index[sim$stage==X], mean.fun, R=1000,
strata=sim$site[sim$stage==X])
ci<-boot.ci(boot,type = c("norm", "basic",
"perc"))
###get ci's (method: normal)
ci[2]->meanA
data.frame(ci[4])[1,2]->lowA
data.frame(ci[4])[1,3]->uppA
X<-"B"
###the mean:
mean.fun(sim$MH.Index[sim$stage==X])
###the boot sample and the ci's:
boot<-boot(sim$MH.Index[sim$stage==X], mean.fun, R=1000,
strata=sim$site[sim$stage==X])
ci<-boot.ci(boot,type = c("norm", "basic",
"perc"))
###get ci's (method: normal)
ci[2]->meanB
data.frame(ci[4])[1,2]->lowB
data.frame(ci[4])[1,3]->uppB
X<-"C"
###the mean:
mean.fun(sim$MH.Index[sim$stage==X])
###the boot sample and the ci's:
boot<-boot(sim$MH.Index[sim$stage==X], mean.fun, R=1000,
strata=sim$site[sim$stage==X])
ci<-boot.ci(boot,type = c("norm", "basic",
"perc"))
###get ci's (method: normal)
data.frame(ci[2])[1]->meanC
data.frame(ci[4])[1,2]->lowC
data.frame(ci[4])[1,3]->uppC
X<-"D"
###the mean:
mean.fun(sim$MH.Index[sim$stage==X])
###the boot sample and the ci's:
boot<-boot(sim$MH.Index[sim$stage==X], mean.fun, R=1000,
strata=sim$site[sim$stage==X])
ci<-boot.ci(boot,type = c("norm", "basic",
"perc"))
###get ci's (method: normal)
ci[2]->meanD
data.frame(ci[4])[1,2]->lowD
data.frame(ci[4])[1,3]->uppD
pldat<-data.frame(data.frame(mean=as.numeric(c(meanA,meanB,meanC,meanD))),
data.frame(low=as.numeric(c(lowA,lowB,lowC,lowD))),
data.frame(upp=as.numeric(c(uppA,uppB,uppC,uppD))))
rownames(pldat)<-c("A","B","C","D")
pldat
###plotting:
windows(4,6)
errbar(c(1:4),pldat$mean,pldat$upp,pldat$low,ylab="MH-Similarity",pch=15,xaxt="n",xlab="Stage")
axis(1,c(1:4),labels=row.names(pldat))
legend("top","errorbars =\n95% normal-\nbootstrap\nconf.
int",bty="n")
#######################################################################
--
View this message in context:
http://n4.nabble.com/bootstrap-confidence-intervals-non-iid-tp1751619p1819182.html
Sent from the R help mailing list archive at Nabble.com.