Hello! I'm puzzled by the following problem. It occurs while trying to predict responses in a test-dataset using a linear model fitted with regFit from the rMetrics "fRegression"-package. All goes well when I call "predict" using the training dataset. However, a call using the test-dataset retuns an error message - telling me that the latter dataset provides variables of different type than the training set. But inspection of the structure of both dataframes shows, that the variables are still all of the type "numeric". (See attached session protocol.) Does anyone have an idea how to fix this? Any help would greatly be appreciated! Kind regards, Gero > str(regdata) 'data.frame': 89 obs. of 7 variables: $ ret1 : num 0.0275 -0.01013 0.00569 -0.01582 0.0226 ... $ lag(ret1) : num NA 0.0275 -0.01013 0.00569 -0.01582 ... $ lag(ret2) : num NA 0.04072 -0.00509 0.02055 -0.01548 ... $ lag(ret3) : num NA 0.05393 0.00299 0.02432 0.02251 ... $ (lag(ret1)*lag(ret2)): num NA 1.12e-03 5.16e-05 1.17e-04 2.45e-04 ... $ (lag(ret1)*lag(ret3)): num NA 1.48e-03 -3.03e-05 1.38e-04 -3.56e-04 ... $ (lag(ret2)*lag(ret3)): num NA 2.20e-03 -1.52e-05 5.00e-04 -3.48e-04 ... > str(regdata.test) 'data.frame': 23 obs. of 6 variables: $ lag(ret1) : num NA 0.01554 0.01458 0.00333 0.01674 ... $ lag(ret2) : num NA 0.01373 0 0.01331 0.00686 ... $ lag(ret3) : num NA 0.0278 0.0152 0.0211 -0.0104 ... $ (lag(ret1)*lag(ret2)): num NA 2.13e-04 0.00 4.43e-05 1.15e-04 ... $ (lag(ret1)*lag(ret3)): num NA 4.32e-04 2.21e-04 7.03e-05 -1.75e-04 ... $ (lag(ret2)*lag(ret3)): num NA 3.82e-04 0.00 2.81e-04 -7.16e-05 ... > ar1.xpred.fitted <- regFit(ar1.xpred.model, data = regdata, use = "lm") > ar1.xpred.train.pred <- predict(ar1.xpred.fitted, regdata, se.fit = FALSE) > ar1.xpred.test.pred <- predict(ar1.xpred.fitted, regdata.test, se.fit = FALSE) Fehler: variable 'lag(ret1)' was fitted with type "numeric" but type "nmatrix.1" was supplied Zus?tzlich: Warnmeldung: 'newdata' had 23 rows but variable(s) found have 89 rows >