Hi,
you need the score value , have a look at ?svm.predict and in the ROCR
example.
traindata <- as.data.frame(matrix(runif(1000),ncol=10))
trainlabels <-
as.factor(sample(c("win","lose"),nrow(data),replace=T,prob=c(0.5,0.5)))
model <- svm(traindata,trainlabels, type="C-classification",
kernel="radial", cost=10,
class.weights=c("win"=3,"lose"=1), scale=FALSE, probability
= TRUE)
prediction <- predict(model, traindata, decision.values = TRUE,
probability = TRUE)
probs <- attr(prediction, "probabilities")[,1]
pred <- prediction(probs,trainlabels)
HTH Christian
> Hello,
>
> I've come across a strange error...
>
>
> Here is what happens:
>
> model <- svm(traindata,trainlabels, type="C-classification",
> kernel="radial", cost=10,
class.weights=c("win"=3,"lose"=1),
> scale=FALSE, probability = TRUE)
> predictions <- predict(model, traindata)
> pred <- prediction(predictions, trainlabels)
>
>
> This returns an error:
> Error in prediction(predictions, trainlabels) :
> Format of predictions is invalid.
>
> Yet my predictions is just a matrix of predicted labels. Nothing
> fancy. (In fact, my step follow the exact example on the ROCR homepage.)
>
> A search through google for "Format of predictions is invalid"
returns
> zero results.
>
> Can anyone suggest how I might fix this problem?
>
> Thank You,
>
>
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>