kende jan
2009-Aug-02 09:57 UTC
[R] Competing Risks Regression with qualitative predictor with more than 2 categories
Hello, I have a question regarding competing risk regression using cmprsk package (function crr()). I am using R2.9.1. How can I do to assess the effect of qualitative predictor (gg) with more than two categories (a,b,c) categorie c is the reference category. See above results, gg is considered like a ordered predictor ! Thank you for your help Jan> # simulated data to test > set.seed(10) > ftime <- rexp(200) > fstatus <- sample(0:2,200,replace=TRUE) > gg <- factor(sample(1:3,200,replace=TRUE),1:3,c('a','b','c')) > cov <- matrix(runif(600),nrow=200) > dimnames(cov)[[2]] <- c('x1','x2','x3') > cov2=cbind(cov,gg) > print(z <- crr(ftime,fstatus,cov2))convergence: TRUE coefficients: x1 x2 x3 gg 0.2624 0.6515 -0.8745 -0.1144 standard errors: [1] 0.3839 0.3964 0.4559 0.1452 two-sided p-values: x1 x2 x3 gg 0.490 0.100 0.055 0.430> summary(z)Competing Risks Regression Call: crr(ftime = ftime, fstatus = fstatus, cov1 = cov2) coef exp(coef) se(coef) z p-value x1 0.262 1.300 0.384 0.683 0.490 x2 0.652 1.918 0.396 1.643 0.100 x3 -0.874 0.417 0.456 -1.918 0.055 gg -0.114 0.892 0.145 -0.788 0.430 [[alternative HTML version deleted]]
Ravi Varadhan
2009-Aug-02 14:43 UTC
[R] Competing Risks Regression with qualitative predictor with more than 2 categories
Hi, You can use `model.matrix' to create the apropriate design matrix for factor variables. set.seed(10) ftime <- rexp(200) fstatus <- sample(0:2,200,replace=TRUE) gg <- factor(sample(1:3,200,replace=TRUE),1:3, c('a','b','c')) cov <- matrix(runif(600),nrow=200) dimnames(cov)[[2]] <- c('x1','x2','x3') cov2 = model.matrix( ~ cov + gg) print(z <- crr(ftime,fstatus,cov2[, -1])) # you shouldn't have intercept in the FG model Hope this helps, Ravi. ____________________________________________________________________ Ravi Varadhan, Ph.D. Assistant Professor, Division of Geriatric Medicine and Gerontology School of Medicine Johns Hopkins University Ph. (410) 502-2619 email: rvaradhan at jhmi.edu ----- Original Message ----- From: kende jan <kendejan at yahoo.fr> Date: Sunday, August 2, 2009 6:01 am Subject: [R] Competing Risks Regression with qualitative predictor with more than 2 categories To: r-help at r-project.org> Hello, > I have a question regarding competing risk regression using cmprsk > package (function crr()). I am using R2.9.1. How can I do to assess > the effect of qualitative predictor (gg) with more than two categories > (a,b,c) categorie c is the reference category. See above results, gg[[elided Yahoo spam]]> Thank you for your help > Jan > > > # simulated data to test > > set.seed(10) > > ftime <- rexp(200) > > fstatus <- sample(0:2,200,replace=TRUE) > > gg <- factor(sample(1:3,200,replace=TRUE),1:3,c('a','b','c')) > > cov <- matrix(runif(600),nrow=200) > > dimnames(cov)[[2]] <- c('x1','x2','x3') > > cov2=cbind(cov,gg) > > print(z <- crr(ftime,fstatus,cov2)) > > convergence: TRUE > coefficients: > x1 x2 x3 gg > 0.2624 0.6515 -0.8745 -0.1144 > standard errors: > [1] 0.3839 0.3964 0.4559 0.1452 > two-sided p-values: > x1 x2 x3 gg > 0.490 0.100 0.055 0.430 > > summary(z) > Competing Risks Regression > > Call: > crr(ftime = ftime, fstatus = fstatus, cov1 = cov2) > > coef exp(coef) se(coef) z p-value > x1 0.262 1.300 0.384 0.683 0.490 > x2 0.652 1.918 0.396 1.643 0.100 > x3 -0.874 0.417 0.456 -1.918 0.055 > gg -0.114 0.892 0.145 -0.788 0.430 > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > > PLEASE do read the posting guide > and provide commented, minimal, self-contained, reproducible code.