Using R, I would like to calculate algorithms to estimate coefficients á and â within the gamma function: f(costij)=((costij)^á)*exp(â*costij). I have its logarithmic diminishing line data (Logarithmic Diminishing Line Data Table) and have installed R¢s Maximum Likelihood Estimation package; however, I am unsure which method to apply in order to calculate the algorisms (i.e., Newton-Raphson Maximization, Nelder-Mead Maximization, etc.) Any guidance you all could provide would be appreciated. Logarithmic Diminishing Line Data Table 1 0.983385666 2 0.578408021 3 0.421101402 4 0.334555838 5 0.278826347 6 0.239521701 7 0.210100828 8 0.187133124 9 0.168633944 10 0.15336976 11 0.140530624 12 0.129561113 13 0.120066673 14 0.111758725 15 0.104420943 16 0.097887721 17 0.092029955 18 0.086745393 19 0.081951911 20 0.077582726 21 0.073582928 22 0.069906916 23 0.066516481 24 0.06337934 25 0.060468017 26 0.057758964 27 0.055231875 28 0.052869138 29 0.050655392 30 0.048577177 31 0.046622642 32 0.044781306 33 0.043043865 34 0.041402028 35 0.03984838 36 0.038376265 37 0.036979694 38 0.03565326 39 0.034392065 40 0.033191667 41 0.03204802 42 0.030957435 43 0.029916538 44 0.02892224 45 0.027971702 46 0.027062313 47 0.026191669 48 0.025357547 49 0.024557893 50 0.023790804 51 0.023054514 52 0.022347383 53 0.021667883 54 0.021014591 55 0.02038618 56 0.01978141 57 0.019199121 58 0.018638226 59 0.018097707 60 0.017576607 61 0.017074029 62 0.016589127 63 0.016121106 64 0.015669216 65 0.015232751 66 0.014811043 67 0.014403462 68 0.014009411 69 0.013628326 70 0.013259673 71 0.012902944 72 0.01255766 73 0.012223364 74 0.011899623 75 0.011586025 76 0.011282179 77 0.010987712 78 0.01070227 79 0.010425513 80 0.01015712 81 0.009896783 82 0.009644208 83 0.009399116 84 0.009161239 85 0.008930321 86 0.008706116 87 0.008488392 88 0.008276923 89 0.008071496 90 0.007871904 91 0.00767795 92 0.007489446 93 0.007306209 94 0.007128067 95 0.006954853 96 0.006786404 97 0.006622569 98 0.006463198 99 0.00630815 100 0.006157287 Thanks, Todd [[alternative HTML version deleted]]
Todd Brauer <toddbrauer <at> yahoo.com> writes:> > Using R, I would like to calculate algorithms to estimate coefficients ? and ?within the gamma function:> f(costij)=((costij)^?)*exp(?*costij).? I have its logarithmic diminishing linedata> (Logarithmic Diminishing Line Data Table) and have installed R?s MaximumLikelihood Estimation> package; however, I am unsure which method to apply in order to calculate thealgorisms (i.e.,> Newton-Raphson Maximization, Nelder-Mead Maximization, etc.)? Any guidance youall could provide> would be appreciated.For a simple, well-behaved problem (like this one) it doesn't really matter that much what algorithm you pick. optim()'s default is Nelder-Mead (typically slightly more robust and less efficient). Here's some sample code to do a least-squares fit: x <- read.table("gammafit.txt") names(x) <- c("x","y") plot(x) sum(x) gfun <- function(p) { a <- p[1] b <- p[2] exp.y <- x$x^b*exp(-a*x$x) sum((exp.y-x$y)^2) } opt1 <- optim(gfun,par=c(a=0.1,b=1)) v <- opt1$par curve(x^v["b"]*exp(-v["a"]*x),add=TRUE,col=2) However, if you really want to do MLE you may need to specify your problem a little more carefully -- sum of squares will find a reasonable answer but likelihood-based inference won't be right. Is this a survival problem (in which case you might want to use the survival package)? If you construct your own likelihood function, you might need to use pgamma(...,lower.tail=FALSE). Ben Bolker
Apparently Analagous Threads
- Grouping by factors in R
- nls profiling with algorithm="port" may violate bounds (PR#8508)
- using minor tickmarks with xYplot
- [PATCH v4] pci: prevent putting nvidia GPUs into lower device states on certain intel bridges
- [PATCH v4] pci: prevent putting nvidia GPUs into lower device states on certain intel bridges