Dear all, I noticed the following in the call of lme using msVerbose. fm1 <- lme(distance ~ age, data = Orthodont, control = lmeControl(msVerbose=T)) 9 318.073: -0.567886 0.152479 1.98021 10 318.073: -0.567191 0.152472 1.98009 11 318.073: -0.567208 0.152473 1.98010 fm2 <- lme(distance ~ age, random =~age, data = Orthodont, lmeControl(msVerbose=T)) 7 318.073: -0.342484 1.75530 4.44650 8 318.073: -0.342507 1.75539 4.44614 9 318.073: -0.342497 1.75539 4.44614 The two model are equivalent and give the same estimates. However, the optimal parameters in the profiled log-likelihood are not the same? why? As I usually thought, the parameters optimised in the profiled likelihood are the log of the precision matrix. The latter can be derived as a Cholesky factorization of the product between the residuals variance and the inverse of the random effects covariance. When I check that it's not the case for model fm1 even if it's equivalent to model fm2. log(chol(((summary(fm1)$sigma)^2)*solve( matrix(getVarCov(fm1), nrow=2)))) [,1] [,2] [1,] -0.3424971 1.492037 [2,] -Inf 1.755388 log(chol(((summary(fm2)$sigma)^2)*solve( matrix(getVarCov(fm2), nrow=2)))) [,1] [,2] [1,] -0.3424971 1.492037 [2,] -Inf 1.755388 In the two mdels, this terms are equals to the optimized parameters in fm2 not in fm1. I am missing something I suppose. Bests, Bernard --------------------------------- [[alternative HTML version deleted]]