Arild Husby
2007-Oct-12 11:10 UTC
[R] change of variance components depending on scaling of fixed effects
Dear all, I am trying to understand the output from a binomial lmer object and why the scaling of a fixed effect changes the variance components. In the model p2rec is cbind(number recruits2,number recruits 1), Pop is populations (five level factor) and ja is year (covariate running from 1955-2004). I.e. biologically I am interested to see how the proportion of recruits from the second clutch has changed over time between the different populations. I've used the Laplace optimization method, due to earlier reports of unstability of PQL when running binomial models. First example: (ja covariate range: 1955-2004) > totmod2 <- lmer(p2rec~Pop*ja + (1|VROUW)+(1|ja), data=dltab2, family=binomial, method="Laplace", na.action=na.omit) > summary(totmod2) Generalized linear mixed model fit using Laplace Formula: p2rec ~ Pop * ja + (1 | VROUW) + (1 | ja) Data: dltab2 Family: binomial(logit link) AIC BIC logLik deviance 12456 12519 -6216 12432 Random effects: Groups Name Variance Std.Dev. VROUW (Intercept) 2.19300 1.48088 ja (Intercept) 0.09675 0.31105 number of obs: 1323, groups: VROUW, 1088; ja, 48 Estimated scale (compare to 1 ) 22.97855 I then scale ja so that: dltab2$ja<-scale(dltab2$ja, scale=FALSE) > totmod2 <- lmer(p2rec~Pop*ja + (1|VROUW)+(1|ja), data=dltab2, family=binomial, method="Laplace", na.action=na.omit) > summary(totmod2) Generalized linear mixed model fit using Laplace Formula: p2rec ~ Pop * ja + (1 | VROUW) + (1 | ja) Data: dltab2 Family: binomial(logit link) AIC BIC logLik deviance 983.8 1046 -479.9 959.8 Random effects: Groups Name Variance Std.Dev. VROUW (Intercept) 0.54162 0.73595 ja (Intercept) 0.29192 0.54029 number of obs: 1323, groups: VROUW, 1088; ja, 48 Estimated scale (compare to 1 ) 0.7061424 Different scaling: dltab2$ja<-scale(dltab2$ja, center=1000, scale=FALSE) > totmod2 <- lmer(p2rec~Pop*ja + (1|VROUW)+(1|ja), data=dltab2, family=binomial, method="Laplace", na.action=na.omit) > summary(totmod2) Generalized linear mixed model fit using Laplace Formula: p2rec ~ Pop * ja + (1 | VROUW) + (1 | ja) Data: dltab2 Family: binomial(logit link) AIC BIC logLik deviance 7136 7198 -3556 7112 Random effects: Groups Name Variance Std.Dev. VROUW (Intercept) 2.19300 1.48088 ja (Intercept) 0.09675 0.31105 number of obs: 1323, groups: VROUW, 1088; ja, 48 Estimated scale (compare to 1 ) 3.083302 Estimates of fixed effects changes as one would expect (so have not printed them here), but I do not understand why there is such a massive difference in the variance components. Note that the first and last example has the same estimates of variance components, but that the estimated scale is massively different. All help is highly appreciated. Thanks very much, Arild -- Arild Husby Institute of Evolutionary Biology Room 413, Ashworth Labs, King's Buildings, University of Edinburgh EH9 3JT, UK E-mail: arild.husby at ed.ac.uk web: http://homepages.ed.ac.uk/loeske/arild.html Tel: +44 (0)131 650 5990 Mob: +44 (0)798 275 0668
Possibly Parallel Threads
- Use of nesting in lmer- error in numerical expression
- singular convergence with lmer function i lme4
- Which features would you like to see on the crantastic.org community portal?
- Very slow read.table on Linux, compared to Win2000
- Announce: cis-puppet 0.2.0 is now available