Dear R Users, I am doing clustering and just wondering (1) whether is it possible to find optimum number of clusters using kmeans just like PAM using silhouette width. asw <- numeric(20) for (k in 2:20) asw[k] <- pam(A, k) $ silinfo $ avg.width k.best <- which.max(asw) cat("silhouette-optimal number of clusters:", k.best, "\n") plot(1:20, asw, type= "h", main = "pam() clustering assessment", xlab= "k (# clusters)", ylab = "average silhouette width") axis(1, k.best, paste("best",k.best,sep="\n"), col = "red", col.axis ="red") (2) Another thing regarding pre-processing data. I have mixed data( Nominal, numeric categorical etc). Before clustering, i convert all the nominal data to binary and normlise them. Is there any elegant way of doing this? (3) Is there any function to nomlise data in R? Thank you [[alternative HTML version deleted]]