Dear R-help, I'm using the R2WinBUGS package and getting an error message: Error in file(file, "r") : unable to open connection In addition: Warning message: cannot open file 'codaIndex.txt', reason 'No such file or directory' I'm using R 2.2.1 and WinBUGS 1.4.1 on a windows machine (XP). My R code and WinBUGS code is given below. The complete WinBUGS program executes correctly in WinBUGS however I'm generating some of my inits using WinBUGS so I may be making an error there. On the other hand, the error generated in R seems to imply it cannot locate a file. I've checked my paths and they are correct. Also, my data is loading correctly. Many thanks, Joe ######################################################### # R code # Runs Bayesian Ordered Logit by calling WinBUGS from R # ologit2.txt: WinBUGS commands library(R2WinBUGS) setwd("c:/docume~1/admini~1/mydocu~1/r_tuto~1") load("oldat.Rdata") # R data file containing data frame ol.dat # with vars: q02, bf23f, bf23b, bf22, bf34a, bf34.1, bf34.2 q02 <- ol.dat$q02 bf23f <- ol.dat$bf23f bf23b <- ol.dat$bf23b bf22 <- ol.dat$bf22 bf34a <- ol.dat$bf34a bf34.1 <- ol.dat$bf34.1 bf34.2 <- ol.dat$bf34.2 N=nrow(ol.dat) Ncut=5 data <- list("N", "q02", "bf23f", "bf23b", "bf22", "bf34a", "bf34.1", "bf34.2", "Ncut") inits <- function() { list(k=c(-5, -4, -3, -2, -1), tau=2, theta=rnorm(7, -1, 100)) } parameters <- c("k") olog.out <- bugs(data, inits, parameters, model.file="c:/Documents and Settings/Administrator/My Documents/r_tutorial/ologit2.txt", n.chains = 2, n.iter = 1000, bugs.directory = "c:/Program Files/WinBUGS14/") ######################################################## # WinBUGS code model exec; { # Priors on regression coefficients theta[1] ~ dnorm( -1,1.0) ; theta[2] ~ dnorm(-1,1.0) theta[3] ~ dnorm( 1,1.0) ; theta[4] ~ dnorm(-1,1.0) theta[5] ~ dnorm( -1,1.0) ; theta[6] ~ dnorm( 1,1.0) theta[7] ~ dnorm( -1,1.0) # Priors on latent variable cutpoints k[1] ~ dnorm(0, 0.1)I( , k[2]); k[2] ~ dnorm(0, 0.1)I(k[1], k[3]) k[3] ~ dnorm(0, 0.1)I(k[2], k[4]); k[4] ~ dnorm(0, 0.1)I(k[3], k[5]) k[5] ~ dnorm(0, 0.1)I(k[4], ) # Prior on precision tau ~ dgamma(0.001, 0.001) # Some defs sigma <- sqrt(1 / tau); log.sigma <- log(sigma); for (i in 1 : N) { # Prior on b[i] ~ dnorm(0.0, tau) # Model Mean mu[i] <- theta[1] + theta[2]*bf22[i] + theta[3]*bf23b[i] + theta[4]*bf23f[i] + theta[5]*bf34a[i] + theta[6]*bf34.1[i] + theta[7]*bf34.2[i] for (j in 1 : Ncut) { # Logit Model # cumulative probability of lower response than j logit(Q[i, j]) <- -(k[j] + mu[i] + b[i]) } # probability that response = j p[i,1] <- max( min(1 - Q[i,1], 1), 0) for (j in 2 : Ncut) { p[i,j] <- max( min(Q[i,j-1] - Q[i,j],1), 0) } p[i,(Ncut+1)] <- max( min(Q[i,Ncut], 1), 0) q02[i] ~ dcat(p[i, ]) } } [[alternative HTML version deleted]]