James Salsman
2005-Dec-20 21:04 UTC
[R] need 95% confidence interval bands on cubic extrapolation
Dear R experts: I need to get this plot, but also with 95% confidence interval bands: hour <- c(1, 2, 3, 4, 5, 6) millivolts <- c(3.5, 5, 7.5, 13, 40, 58) plot(hour, millivolts, xlim=c(1,10), ylim=c(0,1000)) pm <- lm(millivolts ~ poly(hour, 3)) curve(predict(pm, data.frame(hour=x)), add=TRUE) How can the 95% confidence interval band curves be plotted too? Sincerely, James Salsman P.S. I know I should be using data frames instead of parallel lists. This is just a simple example.
Liaw, Andy
2005-Dec-20 21:48 UTC
[R] need 95% confidence interval bands on cubic extrapolation
Look at the "interval" option in ?predict.lm. Andy From: James Salsman> > Dear R experts: > > I need to get this plot, but also with 95% confidence interval bands: > > hour <- c(1, 2, 3, 4, 5, 6) > millivolts <- c(3.5, 5, 7.5, 13, 40, 58) > > plot(hour, millivolts, xlim=c(1,10), ylim=c(0,1000)) > > pm <- lm(millivolts ~ poly(hour, 3)) > > curve(predict(pm, data.frame(hour=x)), add=TRUE) > > How can the 95% confidence interval band curves be plotted too? > > Sincerely, > James Salsman > > P.S. I know I should be using data frames instead of parallel lists. > This is just a simple example. > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! > http://www.R-project.org/posting-guide.html > >
Marc Schwartz (via MN)
2005-Dec-20 22:29 UTC
[R] need 95% confidence interval bands on cubic extrapolation
On Tue, 2005-12-20 at 13:04 -0800, James Salsman wrote:> Dear R experts: > > I need to get this plot, but also with 95% confidence interval bands: > > hour <- c(1, 2, 3, 4, 5, 6) > millivolts <- c(3.5, 5, 7.5, 13, 40, 58) > > plot(hour, millivolts, xlim=c(1,10), ylim=c(0,1000)) > > pm <- lm(millivolts ~ poly(hour, 3)) > > curve(predict(pm, data.frame(hour=x)), add=TRUE) > > How can the 95% confidence interval band curves be plotted too? > > Sincerely, > James Salsman > > P.S. I know I should be using data frames instead of parallel lists. > This is just a simple example.There is an example in ?predict.lm. Given your data, something like the following will work: hour <- c(1, 2, 3, 4, 5, 6) millivolts <- c(3.5, 5, 7.5, 13, 40, 58) pm <- lm(millivolts ~ poly(hour, 3)) # Now create a new dataset with an interval # of hours that fits your data above # This is then used in predict.lm() below # Smaller increments will create smoother lines in the plot new <- data.frame(hour = seq(1, 6, 0.5)) # Use the new data and generate confidence intervals # based upon the model clim <- predict(pm, new, interval = "confidence")> climfit lwr upr 1 4.400794 -17.659582 26.46117 2 2.879712 -12.954245 18.71367 3 2.817460 -14.317443 19.95236 4 4.252232 -12.822969 21.32743 5 7.222222 -8.051125 22.49557 6 11.765625 -2.374270 25.90552 7 17.920635 2.647288 33.19398 8 25.725446 8.650246 42.80065 9 35.218254 18.083351 52.35316 10 46.437252 30.603295 62.27121 11 59.420635 37.360259 81.48101 # Now use matplot to draw the fitted line (black) # and the CI's (red) matplot(new$hour, clim, lty = c(1, 2, 2), col = c("black", "red", "red"), type = "l", ylab = "predicted y") See ?predict.lm and ?matplot for more information. HTH, Marc Schwartz
Apparently Analagous Threads
- adjusted R^2 vs. ordinary R^2
- application to mentor syrfr package development for Google Summer of Code 2010
- glm family=binomial logistic sigmoid curve problem
- ordinary polynomial coefficients from orthogonal polynomials?
- Speex in flash player: how to work with?