I was going through all kinds of torture to figure this out. An elegant
solution, indeed.
Thank you very much.
Shawn Way, PE
Engineering Manager
sway at tanox.com
-----Original Message-----
From: Liaw, Andy [mailto:andy_liaw at merck.com]
Sent: Friday, April 16, 2004 9:15 AM
To: 'Shawn Way'
Subject: RE: [R] residuals
Shawn,
This is what I'd do:
lof <- function(x, y) {
fit1 <- anova(lm(y ~ x))
fit2 <- summary(aov(y ~ factor(x)))[[1]]
SSpe <- fit2[["Sum Sq"]][2]
DFpe <- fit2[["Df"]][2]
SSresid <- fit1[["Sum Sq"]][2]
DFresid <- fit1[["Df"]][2]
SSlof <- SSresid - SSpe
DFlof <- DFresid - DFpe
Fstat <- (SSlof / DFlof) / (SSpe / DFpe)
pval <- pf(Fstat, DFlof, DFpe, lower.tail=FALSE)
out <- matrix(c(SSlof, SSpe, DFlof, DFpe, Fstat, NA, pval, NA), nrow=2,
dimnames=list(c("Lack-of-fit", "Pure
Error"),
c("Sum Sq", "Df", "F
value", "Pr(>F)")))
class(out) <- c("anova", class(out))
out
}
On your data, I get:
> lof(data$ref, data$actual)
Sum Sq Df F value Pr(>F)
Lack-of-fit 0.13441 1 0.7984 0.4374
Pure Error 0.50505 3
Best,
Andy
> From: Shawn Way
>
>
> I'm trying to determine the lack of fit for regression on the
> following:
>
> data <- data.frame(ref=c(0,50,100,0,50,100),
> actual=c(.01,50.9,100.2,.02,49.9,100.1),
> level=gl(3,1))
> fit <- lm(actual~ref,data)
> fit.aov <- aov(actual~ref+Error(level),data)
>
> According to the information I have, the lack of fit for this
> regression is
> the f-ratio between the residuals of the level contribution and the
> residuals within. I'm trying to get the information from the
> fit to make
> this ratio of the residual mean squares.
>
> Any thoughts?
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide!
> http://www.R-project.org/posting-guide.html
>
>
----------------------------------------------------------------------------
--
Notice: This e-mail message, together with any attachments,...{{dropped}}