Good Day,
Included below is some code to generate data and to fit a mixed effects
model to this fake data.  The code works as expected when I call the
function "lme" in Splus but not in R.  
The error message from calling lme in R is: 
"Error in getGroups.data.frame(dataMix, groups) :
        Invalid formula for groups"
I installed the nlme package for R around 20 August 2003. 
Thanks in advance.
System information:
Splus:
Version 6.1.2 Release 2 for Sun SPARC, SunOS 5.6 : 2002
R:
platform i686-pc-linux-gnu
arch     i686
os       linux-gnu
system   i686, linux-gnu
status
major    1
minor    7.1
year     2003
month    06
day      16
language R
############## BEGINNING OF CODE ###########################
# a fake dataset to make the bumps with
nn <- 30  # of data points
mm <- 7   # number of support sites for x(s)
# create sites s
ss <- seq(1,10,length=nn)
# create the data y
e1 <- rnorm(nn,sd=0.1)
e2 <- cos(ss/10*2*pi*4)*.2
yy <- sin(ss/10*2*pi)+e2+e1
plot(ss,yy)
# locations of support points
ww <- seq(1-2,10+2,length=mm)
# width of kernel
sdkern <- 2
# create the matrix KK
KK <- matrix(NA,ncol=mm,nrow=nn)
for(ii in 1:mm){
KK[,ii] <- dnorm(ss,mean=ww[ii],sd=sdkern)
}
# create a dataframe to hold the data
df1 <- data.frame(y=yy,K=KK,sub=1)
df1$sub <- as.factor(df1$sub)
# now fit a mixed model using lme
a1 <- lme(fixed= y ~ 1,
          random= pdIdent(~KK-1),
          data=df1,na.action=na.omit)
# obtain and plot the fitted values
a1p <- as.vector(predict(a1,df1))
lines(ss,a1p,lty=1)
##################### END OF CODE ######################################3
-- 
*********************************************************************
| Michael Fugate                         Temp Phone: (505) 665-1817 |
| Statistical Sciences Group, D-1                                   |
| Los Alamos National Laboratory         email: fugate at lanl.gov     |
| Los Alamos, NM 87545                                              |
| Mail Stop: F600                                                   |
Michael Fugate <fugate at lanl.gov> writes:> ############## BEGINNING OF CODE ########################### > # a fake dataset to make the bumps with > nn <- 30 # of data points > mm <- 7 # number of support sites for x(s) > # create sites s > ss <- seq(1,10,length=nn) > # create the data y > e1 <- rnorm(nn,sd=0.1) > e2 <- cos(ss/10*2*pi*4)*.2 > yy <- sin(ss/10*2*pi)+e2+e1 > plot(ss,yy) > > # locations of support points > ww <- seq(1-2,10+2,length=mm) > # width of kernel > sdkern <- 2 > > # create the matrix KK > KK <- matrix(NA,ncol=mm,nrow=nn) > for(ii in 1:mm){ > KK[,ii] <- dnorm(ss,mean=ww[ii],sd=sdkern) > } > > # create a dataframe to hold the data > df1 <- data.frame(y=yy,K=KK,sub=1) > df1$sub <- as.factor(df1$sub) > > # now fit a mixed model using lme > a1 <- lme(fixed= y ~ 1, > random= pdIdent(~KK-1), > data=df1,na.action=na.omit)You don't have a grouping factor in the random specification and I can't tell from the simulation what you would expect the groups to be.> # obtain and plot the fitted values > a1p <- as.vector(predict(a1,df1)) > lines(ss,a1p,lty=1) > > ##################### END OF CODE ######################################3 > > -- > ********************************************************************* > | Michael Fugate Temp Phone: (505) 665-1817 | > | Statistical Sciences Group, D-1 | > | Los Alamos National Laboratory email: fugate at lanl.gov | > | Los Alamos, NM 87545 | > | Mail Stop: F600 | > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help-- Douglas Bates bates at stat.wisc.edu Statistics Department 608/262-2598 University of Wisconsin - Madison http://www.stat.wisc.edu/~bates/
Michael Fugate <fugate at lanl.gov> writes:> ############## BEGINNING OF CODE ########################### > # a fake dataset to make the bumps with > nn <- 30 # of data points > mm <- 7 # number of support sites for x(s) > # create sites s > ss <- seq(1,10,length=nn) > # create the data y > e1 <- rnorm(nn,sd=0.1) > e2 <- cos(ss/10*2*pi*4)*.2 > yy <- sin(ss/10*2*pi)+e2+e1 > plot(ss,yy) > > # locations of support points > ww <- seq(1-2,10+2,length=mm) > # width of kernel > sdkern <- 2 > > # create the matrix KK > KK <- matrix(NA,ncol=mm,nrow=nn) > for(ii in 1:mm){ > KK[,ii] <- dnorm(ss,mean=ww[ii],sd=sdkern) > } > > # create a dataframe to hold the data > df1 <- data.frame(y=yy,K=KK,sub=1) > df1$sub <- as.factor(df1$sub) > > # now fit a mixed model using lme > a1 <- lme(fixed= y ~ 1, > random= pdIdent(~KK-1), > data=df1,na.action=na.omit) > > # obtain and plot the fitted values > a1p <- as.vector(predict(a1,df1)) > lines(ss,a1p,lty=1)lme in S-PLUS is older than the one in R, and some things changed. I think you want df1 <- data.frame(y=yy,K=I(KK),sub=1) a1 <- lme(fixed= y ~ 1, random= list(sub=pdIdent(~K-1)), data=df1,na.action=na.omit) lines(ss,predict(a1,df1,1)) (Apparently you can't do a level-0 prediction in a model with only an intercept, which looks like a bit of a bug. Of course, that is just the intercept for all observations, but...) -- O__ ---- Peter Dalgaard Blegdamsvej 3 c/ /'_ --- Dept. of Biostatistics 2200 Cph. N (*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918 ~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk) FAX: (+45) 35327907