Hi all,
I'm here again with my newbies questions :(
I have a simple example:
count of slugs in two fields.
I need to make a barplot with mean and SE of mean.
So I have:
The mean:> tapply(slugs,field,mean)
Nursery Rookery
1.275 2.275
The SE:> tapply(slugs,field,sd)/sqrt(tapply(slugs,field,length))
Nursery Rookery
0.3651264 0.3508004
If the data has been normally distributed it is correct, but it is
overdipersed count data.
I make a model
> m.poisson <- glm(slugs~field,family=quasipoisson)
And I have these coefficients:
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2429 0.2490 0.976 0.3323
fieldRookery 0.5790 0.3112 1.861 0.0666 .
The estimate mean = mean
1.275 = exp(0.2429)
2.275 = exp(0.2429+0.5790)
But and the correct standard error of mean? How to obtain this? Exist any
function for calculate this? Exist another better measure than SE for
non-normal errors (poisson, quasi, binomial, gamma etc)?
Thanks
Ronaldo
--
Without followers, evil cannot spread.
-- Spock, "And The Children Shall Lead", stardate 5029.5
--
| // | \\ [*****************************][*******************]
|| ( ? ? ) [Ronaldo Reis J?nior ][PentiumIII-600 ]
| V [UFV/DBA-Entomologia ][HD: 30 + 10 Gb ]
|| / \ [36571-000 Vi?osa - MG ][RAM: 128 Mb ]
| /(.''`.)\ [Fone: 31-3899-2532 ][Video: SiS620-8Mb ]
||/(: :' :)\ [chrysopa at insecta.ufv.br ][Modem: Pctel-onboar]
|/ (`. `'` ) \[ICQ#: 5692561 ][Kernel: 2.4.18 ]
|| ( `- ) [*****************************][*******************]
||| _/ \_Powered by GNU/Debian W/Sarge D+ || Lxuser#: 205366